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(5)      Introduction 

In the United States, breast cancer is the leading cause of death in women between 40 to 55 years 
of age(1990). It is estimated that one out of eight women will develop breast cancer in their lifetime 
(Boring, et al. 1994, Harris, et al. 1992). There is considerable evidence that early diagnosis and 
treatment significantly improves the chance of survival for patients with breast cancer (Byrne, et al. 1994, 
Curpen, et al. 1995, Feig and Hendrick 1993, Moskowitz 1987, Seidman, et al. 1987, Smart, et al. 
1995). The American Cancer Society — National Cancer Institute Breast Cancer Detection 
Demonstration Project (BCDDP) has shown that mammography contributes significantly in the detection 
of localized breast cancer in asymptomatic women (Seidman, et al. 1987). 

Although mammography has a high sensitivity for detection of breast cancers when compared to 
other diagnostic modalities, studies indicate that radiologists do not detect all carcinomas that are visible 
on retrospective analyses of the images (Baines, et al. 1986, Bassett, et al. 1987, Bird, et al. 1992, 
Harvey, et al. 1993, Haug, et al. 1987, Hillman, et al. 1987, Kalisher 1979, Martin, et al. 1979, 
Moskowitz 1987, Wallis, et al. 1991). While double reading can reduce the miss rate in radiographic 
reading (Metz and Shen 1992, Thurfjell, et al. 1994), it also increases the cost of screening. In our ROC 
study (Chan, et al. 1990), we found that a CAD scheme, which alerts the radiologist to suspicious 
clusters of microcalcifications, can significantly improve radiologists' accuracy in detecting the 
microcalcifications under experimental conditions that simulate the rapid interpretation of screening 
mammograms. More recently, Kegelmeyer et al. (Kegelmeyer, et al. 1994) also showed that CAD can 
improve radiologists' detection of spiculated masses. These studies indicate that CAD is a viable 
alternative to double reading by radiologists. 

Early breast cancers are often characterized by subtle clustered microcalcifications and masses 
(Tabar and Dean 1985). It has been reported that between 30 and 50% of breast carcinomas detected 
radiographically demonstrate microcalcifications on mammograms, and 40 to 50% of breast carcinomas 
present as masses. The high correlation between the presence of microcalcifications and masses and the 
presence of breast cancers indicates that an increase in the accuracy of detection and analysis of the 
characteristic features of these lesions may lead to further improvement in the efficacy of mammography 
as a screening procedure for the detection of early breast cancer. 

In the past few years, we have been developing CAD algorithms in detection and classification of 
microcalcifications and masses using advanced image processing and computer vision techniques. Our 
CAD algorithms have provided very promising results in laboratory tests. At this stage, it is necessary to 
test the algorithms in a clinical trial with a large number of mammograms obtained from the general 
patient population before specific methods can be developed to further improve their performance. 
Therefore, our goals in this proposal are to implement our CAD algorithms in a fast workstation, develop 
user interfaces for efficient operation of the CAD programs, and conduct a pilot clinical trial of the CAD 
schemes at three mammographic screening sites. Based on the results of the pilot clinical trial, we can 
evaluate the sensitivity and specificity of the CAD algorithms, analyze the effects of the CAD schemes 
on mammographic screening, identify any potential problems in a clinical environment, and develop 
methods to further improve the CAD schemes in the future. We believe that this is a crucial step to 
develop a clinically practical CAD workstation. 

It has been recognized that digital mammography is one of the key research areas for 
improvement in the diagnosis of breast cancer (Shtern, et al. 1995). Two of the major issues in digital 
mammography are the technological requirements in developing high resolution digital detectors and the 
transmission and archiving the large amount of data. A number of solid-state large-area digital detectors 



are being developed for mammographic application. It has been generally recognized that a pixel size of 
no greater than 0.05 mm x 0.05 mm will be required for imaging the subtle features of 
microcalcifications. At this resolution, a single 8" x 10" mammogram will result in 40 MB of digital 
data. 

Data compression can reduce the amount of data for transmission and storage. However, there is 
often a tradeoff between compression ratio and image fidelity. Data compression in mammography is 
especially difficult because of the very subtle image details such as microcalcifications and mass margins 
that need to be preserved. We have investigated the effects of data compression on computerized 
detection of microcalcifications previously. In the current proposal, we plan to develop a CAD guided 
data compression technique to maximize the compression efficiency with a minimum loss of information. 
Our approach is to preserve the original image information by lossless compression in potentially 
important regions on the mammograms indicated by the CAD programs. For breast areas outside these 
regions, we will apply the most efficient lossy compression technique that does not cause noticeable 
degradation of image details. We will conduct both receiver operating characteristic studies and 
subjective image quality ranking studies to compare observer performance on the uncompressed images, 
on images compressed with the selected lossy technique, and on images compressed with the standard 
JPEG technique. 

The importance of this research is based on the fact that x-ray mammography is, at present, the 
most reliable diagnostic procedure for detection of early breast cancer. Our proposed research aims at the 
development of a CAD workstation which may assist radiologists in screening and characterizing 
abnormalities on mammograms and the development of an efficient CAD-guided data compression 
technique for digital mammography. The CAD workstation, once developed, can be implemented and 
operated cost-effectively in various breast imaging facilities as a second opinion, and thus will potentially 
increase the diagnostic accuracy of mammography for breast cancer detection. The data compression 
technique will facilitate the implementation of telemammography and digital mammography for breast 
cancer screening. These new technologies therefore are expected to have a significant impact on patient 
care, especially in rural and remote areas. 

With the support of this grant from the USAMRMC Breast Cancer Research Program, we have 
developed a CAD workstation with a proper graphical user interface for a pilot clinical trial. CAD 
workstations have been implemented at the University of Michigan and at the Georgetown University. 
We have evaluated our mass and microcalcification detection programs with a large number of randomly 
sampled clinical cases. We have prepared cases for a subjective image quality comparison experiment to 
evaluate the feature guide data compression technique. Statistical methods are being developed for 
analysis of the pilot clinical data. We will discuss the details of these progresses in the following section. 



(6)      Body 

During the funding period of 9/22/98 to 9/21/99, the three collaborating institutions in this 
Demonstration Project: University of Michigan, Georgetown University, and University of Iowa, have 
conducted the following tasks. The report from each of the institution is presented separately. A 
summary that links the tasks together and discusses the overall progress of the project is presented after 
the individual reports. 

University of Michigan 

(a)      Evaluation of performance of computerized detection program 

Preprocessing of mammograms 

Before the input of a mammogram into the automated detection programs, the mammogram has 
to be processed to remove all the unexposed areas around the image, including the patient identification 
label. The breast image has also to be segmented from the non-breast background so that detection will 
be performed only within the breast area. We have been developing fully automated programs to 
perform these tasks. These programs are implemented in an UNK Alphastation and is an integral part of 
the mass and microcalcification detection programs. We have tested the program in over 1000 unknown 
test mammograms to evaluate its accuracy in trimming and breast segmentation. Based on the evaluation 
of the unknown cases, we have modified the programs and the accuracy has been improved substantially. 
The programs currently could reliably trim off the unexposed film edges and segment the breast area in 
over 95% of the test cases that we collected at the University of Michigan. Because of the differences in 
the patient labels and screen-film cassettes, the programs had some problems in about 10% of the images 
collected at the Georgetown University. The current performance will be adequate for the pilot clinical 
study. However, further modifications are underway to improve the accuracy of segmentation for the 
mammograms. 

Detection of Masses 

The block diagram for the proposed detection scheme is shown in Fig. 1. When a digitized 
mammogram is input to the CAD system, edge trimming and breast area segmentation is applied to the 
image. Global density-weighted contrast enhancement (DWCE) segmentation is used to identify an 
initial set of breast structures. The DWCE segmentation employs an adaptive filter to enhance the local 
contrast and accentuate mammographic structures on the image. After contrast enhancement, Laplacian- 
Gaussian edge detection is applied and all enclosed objects are filled to produce a set of detected 
structures for the image. These objects are then used as starting locations for a clustering-based region- 
growing algorithm. First, an initial set of seed objects are determined by identifying all local maxima in 
the original gray-scale image. K-means clustering is then applied to the background-corrected regions of 
interest (ROIs) defined by each object. Since the DWCE segmentation and growing do not differentiate 
masses from normal tissues, a large number of objects are usually detected in each mammogram. A set 
of features is extracted from each detected object and used to differentiate between masses and normal 
breast structures. A classifier employing 11 morphological features is initially used to eliminate objects 
that had shapes significantly different from breast masses. Texture features are then computed for all 
remaining structures and used with a linear classifier as a final arbiter between potential masses and 
normal structures. The performance of this mass detection program on a training set of 253 
mammograms achieved a 81% sensitivity at a false-positive rate of 2.1 per image and a 85% sensitivity at 



a false-positive rate of 2.1 per image for malignant masses. The free response receiver operating 
characteristic (FROC) curve of the detection at all thresholds is shown in Fig. 2. Three different methods 
of scoring the detection are shown: the single threshold method, and methods using the hybrid 1 and 
hybrid 2 classifiers. The single threshold classifiers simply applies a single global threshold to all 
detected structures. The hybrid 1 classifiers normalizes the scoring between images by rescaling the 
maximum and minimum score within each image to 1 and 0, respectively. A single threshold between 1 
and 0 is then applied. The hybrid 2 classifier keeps at most the detected objects with the highest 3 scores. 
A single threshold, without any rescaling, is then applied to this reduced set of objects. 

We have evaluated the performance of our mass detection program with randomly selected test 
cases from patients with biopsy-proven masses. An experienced radiologist identified all the masses on 
each image and the locations of the mass on the digitized mammogram were stored in a truth file for 
scoring of the detection results. For a test data set containing 233 masses, the program achieved a 
sensitivity of about 82% at a false-positive rate of 2.1 per image for malignant masses (Fig. 3). If all 
malignant and benign masses were taken into account, the detection sensitivity was 73% at a false- 
positive rate of 2.2 per image (Fig. 4). For a test data set of 100 mammograms collected at the 
Georgetown University, the program achieved a sensitivity of 74% at a false-positive rate of 2 per images 
(see Fig. 6 in Georgetown University report below). This performance is reasonable taking into account 
the fact that these cases are truly independent of the training data set. Furthermore, both the screen-film 
system and the film digitizer are different from those used for the training cases. 

Detection of Microcalcifications 

We have completed the integration of the microcalcification detection program into the automated 
CAD system. Some modifications of the microcalcification detection program have also been 
incorporated into the program to improve the detection accuracy. For this program, an input digitized 
mammogram is preprocessed with the same edge trimming and breast area segmentation program as for 
mass detection. The breast region of the digitized mammogram is processed with spatial filters to obtain 
the signal-enhanced and signal-suppressed images. A difference image is then obtained by subtracting 
the signal-suppressed image from the signal-enhanced image. Since the low-frequency structured 
background is similar in the two images, the difference image technique removes the slowly varying 
background from the difference image. An adaptive gray-level thresholding technique is then applied to 
the difference image in order to segment potential microcalcifications from the remaining noise 
background. The resulting threshold image contains groups of pixels with values above the threshold 
superimposed on a uniform background. Potential microcalcifications are identified in the threshold 
image using an area-thresholding criterion that eliminates random noise points with areas smaller than a 
preselected number of pixels. Additionally a convolution neural network trained to recognize true 
microcalcification patterns is used to reduce false positives. Finally a clustering criterion is used to 
identify microcalcification clusters containing more than a preselected number of detected 
microcalcifications within a predefined diameter. We have evaluated the performance of the 
microcalcification detection program with randomly selected cases containing biopsy-proven 
microcalcifications. With a test data set of 260 images that contained 77 malignant and 143 benign 
microcalcification clusters, the detection program achieved a sensitivity of 79% at a false-positive rate of 
0.8 cluster per image. The FROC curve at different decision thresholds is plotted in Fig. 5. 



(b)      CAD View workstation 

Improvement of the CAD visualization system 

The design and operation of the graphical user interface (GUI) have been discussed in details in 
last year's report. In this year, we have set up a PC workstation with a pentium HI processor and a liquid 
crystal display (LCD) monitor in our off-line reading room for the CAD reading and recording of the 
radiologists' evaluation. This PC workstation is named "CADView." We have conducted preliminary 
clinical testing of the CAD View for display of the computer detection results during film interpretation. 
Several experienced mammographers evaluated the results and the GUI. These radiologists are clinically 
oriented and they are not involved in the development of the GUI. The purpose of the evaluation is to 
assess the practicality of the GUI for radiologists who are not familiar with the CAD project and the use 
of computer outputs. Based on the radiologists' suggestions and comments, revisions are made to 
improve the user-friendliness of CAD View for daily clinical use. For the purpose of the pilot clinical 
study, we have decided to record not only the action category but also the BI-RADS assessment by the 
radiologist before and after the computer detection results are displayed. The evaluation results are 
recorded in our database. After testing with the radiologists who are not familiar with CAD, many 
feedback protections have been implemented in order to avoid skipping of scoring or inappropriate 
reading sequence. These modifications ensure that complete reading results will be collected from every 
reader and every case to be read. 

Training experiment 

We have designed a small-scale training experiment to familiarize the radiologists with the CAD 
workstation and the pilot clinical study. A set of 15 screening cases was selected from our recent patient 
files. All cases included a current exam and an exam from the previous year that were read as normal. In 
addition, three cases with subtle abnormalities that were biopsied in the current year were also selected 
and randomly mixed with the normal cases. The films in the previous year were processed by the 
detection programs to obtain computer detection results. Four experienced radiologists were asked to 
read the previous exam without and with CAD in a setting similar to our planned pilot clinical study. 
After the reading and recording of their decision without and with CAD using the CADView 
workstation, the current-year exam was presented to the radiologists. The radiologists could thus learn 
the characteristics of the true-positive and false-positive detections by the computer. This study was 
important because it familiarized the radiologists with the performance of the computer. This would 
reduce the possibility that radiologists would be over-sensitized by the computer output and increased the 
call back rates. 

(c)       Implementation of CADView workstation at Georgetown University 

We have installed a CADView workstation and a high speed UNDC AlphaStation at the 
Georgetown University for the pilot clinical study. The Alpha workstation and the CADView were set 
up in the same way as the systems at the University of Michigan. The operation of the CADView and the 
processing of the images on the AlphaStation are the same in both sites. This facilitates the maintenance 
and the upgrade of the system software. Our collaborators, Dr. Lo and Dr. Freedman at Georgetown 
University have tested the systems and performed evaluation on the detection programs using cases with 
biopsy-proven masses and calcifications. They have reported the details of the implementation and 
testing in the following sections. 
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Fig. 1. Block diagram of the current mass segmentation method. 
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Fig. 2. The overall performance achieved by the mass detection program for a training set 
of 253 mammograms. The detection accuracy is represented by an FROC curve. 
Three different methods of scoring the detection are shown: the single threshold 
method, and methods using the hybrid 1 and hybrid 2 classifiers. The single 
threshold classifiers simply applies a single global threshold to all detected 
structures. The hybrid 1 classifiers normalizes the scoring between images by 
rescaling the maximum and minimum score within each image to 1 and 0, 
respectively. A single threshold between 1 and 0 is then applied. The hybrid 2 
classifier keeps at most the detected objects with the highest 3 scores. A single 
threshold, without any rescaling, is then applied to this reduced set of objects. The 
same legend applies to Figs. 3,4, and 6 below and will not be repeated there. 
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The overall performance achieved by the mass detection program for a test data set 
of 233 masses. 
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Fig. 4.     The performance achieved by the mass detection program for a data set of 119 
mammograms containing malignant masses. 
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Fig. 5.     The performance achieved by the microcalcification detection program for a test 
data set of 260 mammograms containing 77 malignant and 143 benign 
microcalcification clusters. 
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Georgetown University 

Annual Report (9/23/98 - 9/22/99) to USAMRMC through University of Michigan 

(a) System  Implementation  for   Computer-Aided   Detection   Clinical   Trial   at   Georgetown 
University 

Although the research team at the ISIS Center, Georgetown University Medical Center has 
independently developed a computer-aided diagnosis system for the detection of clustered 
microcalcifications and masses on mammograms in the past 8 years, we decided to use the CAD system 
developed by the research team led by Dr. Heang-Ping Chan (the PI of this project) at the University of 
Michigan to prepare and perform the clinical trial. Initially we attempted to install the detection 
programs on a SUN workstation. However, despite efforts to modify the programs to accommodate 
both systems, we found that there were a number of system incompatibility problems between an 
COMPAQ/DEC AlphaStation and a SUN workstation, which may hinder management and analysis of 
the data collected from the study. Furthermore, the computation speed of the SUN workstation is too 
slow to meet the demand of processing the screening mammograms. In order to avoid system 
incomparability, we purchased a high-speed COMPAQ/DEC XP1000 workstation and a PC workstation 
with our own fund to conduct the study. Dr. Nick Petrick and Dr. Lubomir Hadjiyski from the 
University of Michigan loaded and tested their software in the XP1000 and the PC workstation, 
respectively. Dr. Ben Lo and Mr. Andrzej Delegacz also worked at the Georgetown side to perform 
various tests suggested by Dr. Heang-Ping Chan. The system and software installation as well as initial 
tests using existing digitized mammograms have now been completed. Some of the testing results are 
summarized in Fig. 5 and Table 1 in Section (b) below. 

Georgetown team has begun to perform the clinical trial in the breast imaging division. 
Currently, Drs. Freedman and Makariou have used the system to perform their routine clinical practice. 
We put a Lumisys film digitizer (Model Lumiscan 150) hosted by a SUN SPARC 10 workstation at the 
Breast Imaging Division, Radiology Department, Georgetown University Medical Center. The data 
flow is chained through a 3-step processing. 

Step 1: A mammogram is digitized at the SUN/Lumiscan workstation. Patient information, including 
ID, age, side, view (CC or MLO) and examination date, is recorded during the digitization and 
entered into CAD patient/film database (part of the CADView system) on the PC computer. 
Each mammogram is digitized at 100 micron resolution. The image files are stored at a 
designated directory at the SUN workstation hard disk. The image files are also transferred for 
further processing to the XP1000 workstation at the ISIS Center via a high-speed Ethernet 
connection. 

Step 2: A control program running on the XP1000 workstation continuously searches for new images 
being transferred from the SUN/Lumiscan workstation. When a new image appears, this control 
program initiates the execution of the program to detect the mass and clustered 
microcalcifications on that image and stores the detection results in appropriate directories. 

Step 3: On the PC workstation, a CADView program, designed and implemented by Drs. Lubomir 
Hadjiyski and Heang-Ping Chan and their co-workers, is used as the user interface to review and 
analyze the results of the mass and microcalcification detection. The CADView program uses 
the automated procedure to download the result images from the XP1000 workstation on an on- 
demand basis.  The radiologist uses the patient ID number to retrieve patient information from 
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the database (updated in step 2), including information on images to be displayed, and show it on 
the screen. If the requested images are not available locally, the program establishes the FTP 
session with the XP1000 workstation and downloads those image files to its working directory 
on the PC workstation. The radiologist can then perform the clinical evaluation of the patient 
films. The program, among others, allows the radiologist to mark the location of any visible 
masses and/or microcalcifications on the images, along with his/her action rating. The results of 
the radiologist's review and evaluation are stored in the database. 

(b) Initial Tests on mammographic cases 

We used 63 mammographic cases containing 268 mammograms, which were collected as a part 
of Dr. Matthew T. Freedman's teaching files with radiographic reading reports, to test the performance 
of the installed system. Dr. Letitial Clark, a MQSA mammographer at GUMC, was invited to identify 
the abnormality on the mammograms based on the previously recorded reports without biopsy results. 
Since the original films were back to the film library, we use the monitor to display the image. The 
display software with window/level and zoom-in/zoom-out functions was used for viewing the 
mammograms. Dr. Clark read each radiological report prior to identifying the location of the associated 
mammograms that an abnormality was reported. The display program is also equipped with a user 
interface that can record the location identified by the radiologist. The window/level function was 
always employed while looking at clustered microcalcifications. In this set of mammograms, 7 out of 
63 cases have no clinically significant signs of breast cancer: one case contains scattered calcifications, 
one case collected from a follow-up mammography (the lesion of which has been removed from the 
breast), and five cases show insignificant asymmetrical density. 43 cases were identified to have 
abnormalities associated with masses or asymmetrical density. 19 cases were identified abnormalities 
associated with clustered calcifications. 9 cases have both masses and clustered calcifications. Dr. 
Clark identified a total of 106 masses on 268 mammograms, of which 100 are primary masses. 

The 100 mammograms that contained masses were processed with the mass detection program 
on the AlphaStation. In the preprocessing stage, the program trimmed the blank edges around the film 
and segment the breast area from the mammogram. The trimming did not work well in nine of the 100 
images. However the detection still seemed to work relatively well even when the trimming had some 
problems. In Table 1, we reported both the overall results and the results without the bad trimming cases 
and also compared the detection with the training and test results from the University of Michigan. Fig. 
6 shows the FROC curve for the entire range of detection thresholds. The true-positive fraction (TPF) 
and the number of false-positive per image (FP/Img) were very similar to those obtained at the 
University of Michigan. The detection program achieved a TPF of 74% at an FP rate of about 2 per 
image. Since the biopsy results of the masses is not known, we cannot report results of the malignant 
and benign masses separately. 

15 



Table 1. Summary of detection results of the mass detection program. 

Cases Mass Types No. 
Images 

No. 
Masses 

No. 
Detected 

TPF FPs/lmg 

UM Training Malig and Benign 253 253 205 81.0 2.1 
UM Training Benign 125 125 96 76.8 2.2 
UM Training Malignant 128 128 109 85.2 2.1 

UM Test Malig and Benign 233 233 171 73.4 2.2 
UM Test Benign 114 114 73 64.0 2.3 
UM Test Malignant 119 119 98 82.4 2.1 

Georgetown Test Primary masses 100 100 75 75.0 2.0 
Georgetown Test Primary masses 

(bad trimming 
cases removed) 

91 91 69 75.8 2.0 

Georgetown Test All masses 100 106 78 73.6 2.0 
Georgetown Test All masses 

(bad trimming 
cases removed) 

91 97 72 74.2 2.0 
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(c) On Global Segmentation of Large Regions of Interest - A unified theory 

In the past few years, there has been a large number of publications that discussed about the 
delineation of a large region of interest (ROI) in the field of digital radiography. The topics include (1) 
breast and glandular areas in mammography, (2) lung field and ribs in chest radiography, (3) lung and 
heart in chest CT image sequence, and (4) liver in abdominal CT images etc. Although this project aims 
to the technical development and clinical evaluation for computer-aided detection of breast cancer and 
digital compression in mammography, we would like to report a technical finding regarding global 
segmentation of a large area which is applied to the segmentation of breast and glandular tissues. 

This finding was initiated by training and analyzing the convolution neural network (CNN) [Lo 
1995]. Although the CNN would take a long training iteration, the internal kernels function as 
convolution filters. Technically, these kernels can be combined into a single kernel. One can also 
deconvolve the original input image by the output image to obtain the filter that is equivalent to the 
CNN process. Although the resulting filters obtained from the deconvolution process may not be 
identical for every pairs of input and output images, our experiment indicates that they are quite close as 
far as global segmentation of a large area is concerned for a specific type of images. To be exact, we 
found that a single linear filter can be found for each type of image segmentation mentioned above. In 
addition, all linear filters discovered so far belong to a single set of filter family. This discovery allows 
us to construct a unified theory as follow. 

Theoretically speaking, the frequency band associated with large area without detail structures 
should be predominated by low frequency. The results, obtained by composing the CNN kernel 
discussed above, prove this fact. We, therefore, hypothesize that the criteria of low frequency filters for 
global segmentation should contain (i) significant amounts of low frequency components, (ii) very few 
or no high frequency components, (iii) no band frequencies associated with the structures that were 
intended to be removed, and (iv) a low (or zero) mean coefficients (i.e., ^t(x, v) ~0.)  Although, a 

great deal of low frequency filter banks are available, there are three types of known filters commonly 
used in digital signal processing: (a) uniform low-pass filters in frequency domain, (b) local mean value 
operators (i.e., uniform column filter) in spatial domain, and (c) Gaussian shape filters. Since main 
frequency components in (a) can be approximately described through (b) and (c), we can assume that the 
filter to be constructed is composed of (b) and (c) components in this study. 

t(x,y) = m(x,y) + G(x,y) .-.(1) 
where 

[0  for  (x + y )     >r 
and r is the cut-off range of the uniform column filter. In addition, the uniform column filter possesses a 
property of 7ur2w1 = 1. Substitute the components of the m(x,y) and G(x,y) filter in eq. (1), we have 

t(     ,k+>v2exp(-(x2 + y2)/2<T2) for  (x2 + y2)V2<r 
KX,y)    \w2cxV(-(x2 + y2)/2a2) for  (x2 + y2f2 > r '"K ' 
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We further constraint that the composed filter should be a filter with zero mean coefficients (i.e., 
\t(x, y) = 0), which is a common requirement when designing an edge enhancement filter. With this 
**y 

constraint, a logical solution in eq. (1) is 

jcr2
Wl = -w2JJexp((;c2 + y2)/2<72)=l. 

*,y 

Hence, w. = —=- and w, = =-. Substituting them into eq. (2), we have 
nr2 2%a 

-L ^Texp(-(^ + y2)/2cT2) for  (x2 + y2?l2<r 
t{xy)=\nr2    2na ...(3) 

^iTexp(-U2 + y2)/2(T2) for (x2 + y2)V2>r 

Our initial experience indicates that 2r should be about the size of the largest structure to be removed. 
The digital form of the composed filter can be implemented below: 

J___Lexp(-(x2 + y2)/2cT2) for  (x2 + y2)l,2<r 

t(xy) = \Am    A° .-(4) 
—exp(-(;t2 + y2)/2<72) for  (x2 + y2)U2>r 
AG 

where  Am=]Tl   for (x2 + y2)ll2<r and AG = ]Texp((*2 + y2)/2a2) 
x,y *,y 

Determination of the filter parameters 

The sample mammograms, used in our study, were digitized at 0.03584 cm per pixel. For the 
segmentation of breast area, we determined that 2r is 40 pixels (1.433 cm) for the flat column filter and 
2a is 100 pixels (3.584 cm) in the Gaussian filter (Fig. 7(A)). Hence, Am = 1,245 and A0 = 15,708. 
The sample chest radiographs used in our study were digitized at 0.07 cm per pixel. For the 
segmentation of lung regions, we determined that 2r is 18 pixels (1.26 cm) for the flat column filter and 
2<J is 74 pixels (5.18 cm) in the Gaussian filter (Fig. 7(B)). These parameters were determined with 
consideration of trimming ribs. Hence, Am = 249 and A0 = 8,602. The same filter also applied to CT 
chest images for segmentation of lungs. Sample images and their results are shown in Figs. 8, 9, 10. 
These results indicate that lung segmentation has been very successful. However, the filter parameters 
set above for the breast has not yet been optimized. The filtered breast area is somewhat underestimated. 
We will test more breast images and report a better set of parameters using this unified approach. 

(d) Integer Wavelet Compression in Mammography 

Collected database 

A total of 530 sets of mammograms were collected and digitized by the SUN/Lumiscan 
workstation. Each case contains 4 mammograms (2 sides and 2 views).   Some cases (less than 10%) 
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contain 1 side 2 views. A total of 310 mammograms (about 50% MLO and 50% CC views) randomly 
selected from the database have been identified as a subset for this compression study. 

Initial visual study using the decompressed mammograms 

We have tested 20 mammograms consisting of a variety of breast parenchymal patterns. Each 
mammogram was compressed at 0.3 bit/pixel, 0.2 bit/pixel, 0.175 bit/pixel, 0.15 bit/pixel, 0.125 bit/pixel, 
and 0.1 bit/pixel initially. We also found that an average of 700 patches (ranging from 400 to 1200) were 
identified by the CAD program. This implies that an average of 700x10x10 pixels x 8 bit must be added 
to the compressed file for lossless compression at the patches. In other words, approximately 0.1 
bit/pixel shall add to the bit rate. Our initial visual inspection indicates that no visual degradation can be 
observed with 0.3+0.1 bit/pixel compression for all mammograms. However, some subtle (blur) artifacts 
can be observed with 0.2+0.1 bit/pixel in large mammograms. The artifacts are barely observed on small 
breasts with 0.15+0.1 bit/pixel. This study serves as a guide for the compression ratio to be tested in the 
full-sized study. 

Execution of the compression program and planning for the comparison study 

Based on the initial study, we have decided to compress each mammogram with bit rates at 0.3+0.1 
bit/pixel and 0.15+0.1 bit/pixel. The compressed files have been stored in SUN tapes and are ready for the 
subjective comparison study. We will continue to add more mammograms in this compression data set. 
Our goal is to obtain 600 mammograms, each from a single case, in the first quarter of 2000. 

We plan to use our own fund to purchase a mammography workstation ($42,000) developed by 
Imaging Smith. Dr. Jerry Gaskil of Imaging Smith has shown Drs. Matthew T. Freedman (clinical director 
of this project at GUMC) and Dr. Heang-Ping Chan the speed and capability of workstation. The system, 
possessing a dual-CPU PC, a large disk space, a high-speed graphic board, and two high-resolution 
monitors, has been used as the main display workstation for the digital mammography project at the Naval 
Hospital (Bethesda, Maryland). We are negotiating with Imaging Smith for the system functionality and 
upgrade for NT window 2000 and plan to purchase a machine in the spring of 2000. After the system is 
installed at Georgetown, we will load the original and compressed files and perform the subjective 
comparison study. 
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Fig. 6.      The overall performance achieved by the mass detection program for a data set of 
91 mammograms containing masses from Georgetown University. 
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Fig. 7. Filter designed for the segmentation of breast area in mammography (A) and lung in chest 
radiography (B). Note that both filtered images were scaled to 255 for highest values for the 
display purpose which means the scaling factor is (255AJ. 

(A) (B) 

Fig. 8. The original breast image and its segmented image filtered by Fig. 7(A). 
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(A2) (B2) 

Fig. 9. The original chest images (Al & 2) and their segmented images (Bl & 2) filtered by Fig. 7(B). 
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Fig. 10. The original CT chest image (A) and its segmented image (B) filtered by Fig. 7(B). 
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University of Iowa 

Development of Methods for Analyzing Pilot Clinical Trial Data 

We have been testing the applicability of the Dorfman, Berbaum, Metz (1992) multireader, 
multipatient (MRMP) methodology for analyzing receiver operating characteristic (ROC) data from the 
clinical trial. The CAD workstation implements the American College of Radiology Breast Imaging 
Reporting and Data System (BI-RADS) final categories. In clinical trials, these categories are action 
categories and have implications for patient care. The category "negative" translates into one year 
followup, "probably benign finding" translates into the course of action "short interval followup 
suggested," "suspicious abnormality" translates into the course of action "biopsy should be considered," 
and "highly suggestive of malignancy" translates into "appropriate action should be taken". Some 
diagnostic imaging systems may lead to more conservative or liberal actions than others. We plan to 
estimate decision thresholds associated with the action categories using proper ROC analysis (Dorfman, 
Berbaum, Metz et al., 1997). Proper ROC analysis is essential for this pilot clinical trial because of the 
paucity of cancers. 

We have tested the Dorfman/Berbaum/Metz (DBM) methodology with a comprehensive series of 
computer simulations on factorial experimental design (Dorfman, Berbaum, Lenth et al., 1998). The 
results suggest that the DBM method provides trustworthy alpha levels with discrete ratings when ROC 
area is not too large, and case and reader sample sizes are not too small. In other situations, the test tends 
to be somewhat conservative or very slightly liberal. We have also tested the DBM methodology with a 
comprehensive series of computer simulations on split plot experimental design (Dorfman, Berbaum, 
Lenth et al., 1999). Our Monte Carlo simulations show that the DBM multireader methodology can be 
validly extended to the split plot design where readers interpret imaging studies of different patients in 
CAD vs no CAD conditions. Both of these validation studies used a balanced design, which is 
appropriate for laboratory studies, but perhaps not for clinical trials. 

We have implemented the DBM methodology for unbalanced designs in the event that different 
readers finish with a different numbers of imaging studies read in CAD and no CAD conditions. To 
achieve this goal, we have distributed the function of MRMP so that we can perform statistical analyses 
with SAS. We used a dynamic link library (DLL) containing RSCORE and a subroutine called 
JACKKNIFE that computes pseudovalues from the raw categorical rating data. The pseudovalues are 
submitted to SAS for statistical analysis (Littell et al. 1996). This means that all of the mixed-model 
programs of SAS are available for multireader multipatient ROC analysis. This is a very flexible 
procedure for analyzing a wide variety of multireader multipatient ROC data, and is ideally suited for 
analyzing data from clinical trials that have the goal of comparing diagnostic modalities. 
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(7)      Key Research Accomplishments 

• Implementation of CAD workstation and the associated CAD software at the University of 
Michigan and the Georgetown University. 

• Implementation and testing of the CAD result visualization software and graphical user 
interface (CADView) at the University of Michigan and the Georgetown University. 

• Testing of mass detection program with 330 mammograms and evaluate the detection 
accuracy software at the University of Michigan and the Georgetown University. 

• Testing of microcalcification detection program with 260 mammograms and evaluate the 
detection accuracy. 

• Preliminary evaluation of effects of CAD on mammographic interpretation by experienced 
radiologists. 

• Collection of database for observer experiment to evaluate effects of image compression on 
mammographic image quality. 

• Development of unified approach for image segmentation by Georgetown University. 

• University of Iowa - Performance of comprehensive Monte Carlo simulation study of multi- 
reader, multi-patient method for analysis of unbalanced design of ROC studies with BI-RADS 
scoring, in preparation of analysis of data collected from the pilot clinical study. 

(8)       Reportable Outcomes 

Publications 

Journal Articles 

1. Chan HP, Sahiner B, Helvie MA, Petrick N, Roubidoux MA, Wilson TE, Adler DD, Paramagul 
C, Newman JS, Sanjay-Gopal S. Improvement of radiologists' characterization of mammographic 
masses by computer-aided diagnosis: an ROC Study. Radiology 1999; 212: 817-827. 

2. Petrick N, Chan HP, Sahiner B, Helvie MA, Goodsitt MM. Combined adaptive enhancement and 
object-based region growing for automated detection of masses on mammograms. Medical 
Physics 1999; 26: 1642-1654. 

Articles Accepted for Publication: 
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1. Sanjay-Gopal S, Chan HP, Wilson TE, Helvie MA, Petrick N, Sahiner B. A regional registration 
technique for automated interval change analysis of breast lesions on mammograms. Medical 
Physics 1999; 26 (in press, December). 

2. Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis: 
Effects of finite sample size on the mean performance of classical and neural network classifiers. 
Medical Physics 1999; 26 (in press, December. 

3. Sahner B, Chan HP, Petrick N, Wagner RF, Hadjiiski LM. Feature selection and classifier 
performance in computer-aided diagnosis: the effect of finite sample size. Medical Physics. 

Conference Proceedings 

1. Chan HP, Helvie MA, Petrick N, Sahiner B, Roubidoux MA, Wilson TE, Joynt LK, Hadjiiski 
LM, Paramagul C, Adler DD, Goodsitt MM. Digital Mammography: observer performance study 
of the effects of pixel size on radiologists' characterization of malignant and benign 
microcalcifications. Proc. SPIE 1999; 3659: 394-397. 

2. Sahiner B, Chan HP, Petrick N, Wagner RF, Hadjiiski LM. Stepwise linear discriminant analysis 
in computer-aided diagnosis: the effect of finite sample size. Proc. SPIE 1999; 3661: 499-510. 

3. Hadjiiski LM, Sahiner B, Chan HP, Petrick N, Helvie MA. Hybrid unsupervised-supervised 
approach for computerized classification of malignant and benign masses on mammograms. Proc. 
SPIE 1999; 3661: 464-473. 

4. Dorfman DD, Berbaum KS, Lenth RV, Chen Y-F. Monte Carlo validation of a multireader 
method for receiver operating characteristic discrete rating data: Split plot experimental design. 
Proc. SPIE 1999; 3663: 91-99. 

Abstracts, Presentations, Scientific Exhibits 

1. Chan HP, Helvie MA, Petrick N, Sahiner B, Roubidoux MA, Wilson TE, Joynt LK, Hadjiiski 
LM, Paramagul C, Adler DD, Goodsitt MM. Digital Mammography: observer performance study 
of the effects of pixel size on radiologists' characterization of malignant and benign 
microcalcifications. Presented at the SPIE International Symposium on Medical Imaging, San 
Diego, CA, February 20-26,1999. 

2. Sahiner B, Chan HP, Petrick N, Wagner RF, Hadjiiski LM. The effects of sample size on feature 
selection in computer-aided diagnosis. Presented at the SPIE International Symposium on 
Medical Imaging, San Diego, CA, February 20-26, 1999. 

3. Hadjiiski LM, Sahiner B, Chan HP, Petrick N, Helvie MA. Hybrid unsupervised-supervised 
approach for computerized classification of malignant and benign masses on mammograms. 
Presented at the SPIE International Symposium on Medical Imaging, San Diego, CA, February 
20-26,1999. 
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4. Petrick N, Chan HP, Goodsitt MM, Sahiner B, Hadjiiski LM. Digital mammographic imaging 
using microlens focusing: Estimates of light collection and x-ray utilization. Presented at the SPIE 
International Symposium on Medical Imaging, San Diego, CA, February 20-26,1999. 

5. Wagner RF, Chan HP, Sahiner B, Petrick N, Mossoba JT. Components of variance in ROC 
analysis of CADx classifier performance. II: Applications of the bootstrap. Presented at the SPIE 
International Symposium on Medical Imaging, San Diego, CA, February 20-26,1999. 

6. Chan HP, Hadjiiski LM, Petrick N, Helvie MA, Roubidoux MA, Sahiner B. Performance 
evaluation of an automated microcalcification detection system. Accepted for presentation at the 
41st Annual Meeting of the American Association of Physicists in Medicine. Nashville, 
Tennessee, July 25-29,1999. 

7. Chan HP, Sahiner B, Helvie MA, Petrick N, Hadjiiski LM, Roubidoux MA. Computer-aided 
breast cancer diagnosis: Comparison of computerized classification with radiologists' 
performance. Accepted for presentation at the 85th Scientific Assembly and Annual Meeting of 
the Radiological Society of North America, Nov. 28-Dec. 3,1999, Chicago, Illinois. 

8. Hadjiiski LM, Chan HP, Sahiner B, Petrick N, Helvie MA, Sanjay-Gopal S. Automated 
identification of breast lesions in temporal pairs of mammograms for interval change analysis. 
Accepted for presentation at the 85th Scientific Assembly and Annual Meeting of the 
Radiological Society of North America, Nov. 28-Dec. 3,1999, Chicago, Illinois. 

9. Sahiner B, Chan HP, LeCarpentier GL, Petrick N, Roubidoux MA, Carson PL. Computerized 
characterization of solid breast masses using three-dimensional ultrasound images. Accepted for 
presentation at the 85th Scientific Assembly and Annual Meeting of the Radiological Society of 
North America, Nov. 28-Dec. 3, 1999, Chicago, Illinois. 

10. Petrick N, Chan HP, Sahiner B, Helvie MA, Paquerault S. Evaluation of an automated computer- 
aided diagnosis system for the detection of masses on prior mammograms. Accepted for poster 
presentation at the SPIE International Symposium on Medical Imaging, San Diego, CA, February 
12-18, 2000. 

11. Zhou C, Chan HP, Petrick N, Sahiner B, Helvie MA, Roubidoux MA, Hadjiiski LM, Goodsitt 
MM. Computerized image analysis: Estimation of breast density on mammograms. Accepted for 
poster presentation at the SPJE International Symposium on Medical Imaging, San Diego, CA, 
February 12-18,2000. 

12. Hadjiiski LM, Chan HP, Sahiner B, Petrick N, Helvie MA, Paquerault S, Zhou C. Interval 
change analysis in temporal pairs of mammograms using a local affine transformation. Accepted 
for poster presentation at the SPIE International Symposium on Medical Imaging, San Diego, CA, 
February 12-18, 2000. 
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(9)       Conclusions 

We have performed extensive evaluation of the computer detection programs and the GUI this 
year. The mass detection program has been evaluated with over 300 mammograms at the University of 
Michigan and the Georgetown University and the test performance of the program on these unknown 
cases was found to be about 73% at a false-positive rate of 2 per image. More importantly, the detection 
sensitivity of malignant masses was 82% at about 2 false-positive per image. The microcalcification 
detection program was evaluated with 260 mammograms and the program achieved a detection 
sensitivity of 79% at about 1 false-positive per image. This performance accuracy is at a reasonable level 
considering the fact that the test mammograms are independent of the training cases. In a small-scale 
reading experiment simulating the pilot CAD reading of screening mammograms by four experienced 
mammography radiologists, we found that the CAD could improve the detection of cancer cases, but 
there might be a very small increase in the call-back rate. We expect that the pilot clinical study will 
provide information if the increase is statistically significant. 

Two CAD View workstations have been implemented at the University of Michigan and the 
Georgetown University. The pilot clinical study in our off-line screening mammography clinics has 
begun and will collect data for the analysis of the effects of CAD on radiologists' reading. 

The CAD-guided image compression project is progressing as planned. The compression 
technique has been evaluated in a small data set described in the GU report last year. A large data set has 
been assembled and the preparation for the observer evaluation study has been completed. The 
subjective image quality comparison study is planned to start early next year. 

Because of the change in the strategy for the CAD workstation development and the addition of 
the mass detection program, as described in the previous reports, as well as the incompatibility of 
different workstations and operating systems, there is a delay in starting the pilot clinical study. We have 
requested and obtained approval for a no-cost-time-extension of one year to make up for part of the work. 
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Improvement of Radiologists' 
Characterization of 
Mammographic Masses by 
Using Computer-aided 
Diagnosis: An ROC Study1 

PURPOSE: To evaluate the effects of computer-aided diagnosis (CAD) on radiolo- 
gists' classification of malignant and benign masses seen on mammograms. 

MATERIALS AND METHODS: The authors previously developed an automated 
computer program for estimation of the relative malignancy rating of masses. In the 
present study, the authors conducted observer performance experiments with 
receiver operating characteristic (ROC) methodology to evaluate the effects of 
computer estimates on radiologists' confidence ratings. Six radiologists assessed 
biopsy-proved masses with and without CAD. Two experiments, one with a single 
view and the other with two views, were conducted. The classification accuracy was 
quantified by using the area under the ROC curve, Az. 

RESULTS: For the reading of 238 images, the Rvalue for the computer classifier was 
0.92. The radiologists' Az values ranged from 0.79 to 0.92 without CAD and 
improved to 0.87-0.96 with CAD. For the reading of a subset of 76 paired views, the 
radiologists' Az values ranged from 0.88 to 0.95 without CAD and improved to 
0.93-0.97 with CAD. Improvements in the reading of the two sets of images were 
statistically significant (P = .022 and .007, respectively). An improved positive 
predictive value as a function of the false-negative fraction was predicted from the 
improved ROC curves. 

CONCLUSION: CAD may be useful for assisting radiologists in classification of 
masses and thereby potentially help reduce unnecessary biopsies. 

Breast cancer is the most prevalent non-skin cancer in women; 178,700 new cases are 
estimated to have occurred in 1998 (1). The mortality of breast cancer is the second highest 
among all cancer deaths in women (1). At present, there is no effective method to prevent 
breast cancer. The best approach to reducing the breast cancer mortality rate is early 
detection and treatment. Because the mammographic features of early-stage breast cancers 
are not very specific, the need for high detection sensitivity leads to biopsy of many 
low-suspicion lesions. The positive predictive values (PPVs) of mammographic signs are, 
therefore, often below 30% (2,3). 

Computer-aided diagnosis (CAD) is considered to be one of the approaches that may 
improve the efficacy of mammography (4). With CAD, a computerized detection algorithm 
alerts a radiologist to the location of the suspicious lesions, and/or a trained computer 
classifier provides the radiologist with an estimate of the likelihood of malignancy of a 
lesion. The radiologist takes into consideration the information provided by the computer 
before making a decision. This "second opinion" may improve the diagnostic accuracy 
because it serves as a form of double reading (5). Furthermore, a computer evaluation is 
often more consistent and reproducible than a human decision maker (6). 

Considerable research has been devoted to the development of computerized schemes 
for the detection and classification of mammographic abnormalities. These efforts have 
advanced the CAD technology such that clinical application appears to be possible in the 
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Figure 1. Histograms illustrate the distributions of (a) size (ie, length of the long axis) and (b) visibility ranking (1 = obvious, 5 = subtle) of the 253 
masses included in the data set. Because classification accuracy depends on the case mix, these distributions provided some information on the 
masses in the data set. 

near future. It is, therefore, necessary to 
evaluate the effects of CAD on radiolo- 
gists' detection and diagnosis of mammo- 
graphic lesions. In a previous receiver 
operating characteristic (ROC) study, we 
demonstrated that CAD could improve 
radiologists' accuracy in the detection of 
subtle microcalcifications on mammo- 
grams (7). Kegelmeyer et al (8) also re- 
ported an improvement in radiologists' 
sensitivity for the detection of spiculated 
masses with use of a computer aid. For 
the classification of mammographic le- 
sions, it has been shown that a computer 
classifier that estimated the likelihood of 
malignancy on the basis of mammographic 
features extracted by radiologists could im- 
prove radiologists' accuracy in distinguish- 
ing malignant from benign lesions (9-11). 

We previously conducted ROC studies 
to compare the performance of radiolo- 
gists with that of the computer (12) and 
to compare radiologists' ability to classify 
masses with and without CAD (13). Jiang 
et al (14) also performed an ROC study of 
the effect of CAD on radiologists' perfor- 
mance in classifying microcalcifications. 
The results of all of these observer perfor- 
mance studies indicate the potential to 
improve mammographic interpretation 
with a computer aid. 

We have developed an automated 
method to analyze masses seen on mam- 
mograms (15-17). A mass is segmented 
from its surrounding breast tissue, and an 
image transformation technique is used 
to transform the mass margin from the 
polar coordinate system to the Cartesian 
coordinate system. A linear discriminant 
classifier then extracts the useful texture 
features from the transformed image and 

merges them into a relative malignancy 
rating. Our approach is different from 
others that use a trained classifier to 
merge radiologist-extracted image fea- 
tures or feature codes by using the Ameri- 
can College of Radiology Breast Imaging 
Reporting and Database System lexicon 
(9-11). Our fully automated method has 
the advantage that, unlike a human 
reader, it does not have variability in 
feature recognition and coding. In addi- 
tion, the computer may be able to extract 
some information, such as texture fea- 
tures, that may not be readily perceived 
by human eyes. We conducted an ROC 
study to evaluate whether this computer aid 
can improve radiologists' performance in 
the classification of mammographic masses 
(13). The results of our observer perfor- 
mance study are described in this article. 

Other investigators also have reported 
on automated algorithms for the classifi- 
cation of mammographic masses (18-21). 
The methods used in these algorithms 
varied, and their accuracy in classifica- 
tion cannot be compared directly because 
of the differences in the data sets. How- 
ever, the effects of CAD on radiologists' 
performance are not expected to depend 
strongly on the specific algorithm if differ- 
ent computer aids of comparable accuracy 
are used. Therefore, the applications of the 
findings of this study should not be limited 
to our computenzed classification aid. 

MATERIALS AND METHODS 

Data Set 

The data set for this study consisted of 
253 mammograms obtained in 103 pa- 

tients. Each image contained a biopsy- 
proved mass that was evaluated in this 
study. Some cases involved multiple views 
or images from multiple examinations. 
The cases were randomly selected from 
patient files from the breast imaging divi- 
sion of a National Cancer Institute- 
designated national cancer center with 
the approval of the Institutional Review 
Board. The PPV of masses recommended 
for biopsy at this center is about 25%- 
30%, but an approximately equal number 
of malignant and benign masses (127 and 
126, respectively) were chosen to en- 
hance the statistical power in this ob- 
server performance study. Any images 
that were judged to be technically poor 
were excluded. 

The mammograms were acquired with 
a contact technique. The dedicated mam- 
mographic systems had a molybdenum 
anode and molybdenum filter, a 0.3-mm 
nominal focal spot, and a reciprocating 
grid. MinR/MinR-E screen-film systems 
(Eastman-Kodak, Rochester, NY) were 
used with these units. Sixty-two of the 
malignant masses and six of the benign 
masses were judged to be spiculated by a 
radiologist (M.A.H.) experienced in mam- 
mography. The radiologist also measured 
the size (ie, longest dimension) and 
ranked the visibility of the masses on a 
scale of 1 (obvious) to 5 (subtle) relative 
to the range of visibility of masses encoun- 
tered in clinical practice. For a description 
of the masses included in the data set, 
histograms of the size and visibility of the 
masses are shown in Figures la and lb, 
respectively. 

For the computer analysis, the selected 
mammograms were digitized with a laser 
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Figure 2. Example of rubber-band-straightening transform for extraction of texture features in the margin region surrounding a mass, (a) Original 
and (b) background-corrected images showing the region of interest with the mass, (c) mammogram showing an outline of the segmented mass, and 
(d) rubber-band-straightening-transformed image of a 40-pixel-wide region surrounding the segmented mass. 

imager (Lumisys DIS-1000, Los Altos, Ca- 
lif) at a pixel size of 0.1 x 0.1 mm and 
12-bit gray levels. This imager has an 
optical density range of about 0.0-3.5. 
The optical density on the film was digi- 
tized linearly to pixel value at a calibra- 
tion of 0.001 optical density unit/pixel 
value in the optical density range of 
about 0.0-2.8. The digitizer deviated from 
a linear response at an optical density 
higher than 2.8. 

For the observer experiments, we used 
laser-printed images of the digitized mam- 
mograms for all readings. The images 
were printed with a 969HQ laser imager 
(Imation, Oakdale, Minn) that was con- 
nected to a Macintosh computer (Apple 
Computer, Cupertino, Calif) through a 
special digital interface. The interface pro- 
vided a 12-bit in, 10-bit out look-up table 
and allowed images to be scaled to differ- 
ent factors with 15 interpolation meth- 
ods. Because this laser imager has a pixel 
size of about 0.085 mm, we enlarged the 
images by about 18% during printing to 
maintain them at the same size as the 
original mammograms. One of the inter- 
polation methods was chosen by an expe- 
rienced radiologist (M.A.H.), who in- 
spected the printed images with a 
magnifier and evaluated the sharpness of 
the spicules and mass boundaries. Be- 
cause of the small pixel size used for both 

digitization and printing, basically no 
noticeable blurring of the masses could 
be seen with the chosen interpolation 
method. The images were also inspected 
for the potential contouring effect of 
10-bit output images, but no noticeable 
artifacts could be found. A linear pixel 
value-to-output optical density calibra- 
tion curve of the laser imager was used for 
the printing. All images were printed 
with the same settings. 

Computerized Classification 
of Masses 

Our computerized method of classify- 
ing mammographic masses has been de- 
scribed in detail previously (15-17). The 
method is summarized as follows: A re- 
gion of interest that contained the biopsy- 
proved mass was identified on the mam- 
mogram by the radiologist. Background 
correction based on a distance-weighted 
estimation method was applied to the 
region of interest to reduce the low- 
frequency density variation in the region. 
A median-filtered smoothed image and 
two high-frequency enhanced images 
were generated from the background- 
corrected region of interest. The smoothed 
and enhanced gray-level values at each 
pixel were used as features in a k-means 
clustering algorithm to classify the pixels 

into two clusters; one was the mass, and 
the other was the surrounding breast 
tissue background. By choosing an appro- 
priate criterion, a mass region slightly 
smaller than the actual mass that was 
visible on the image was segmented. 

The boundary of the segmented region 
was smoothed by morphologic filtering. 
A new image transformation technique, 
referred to as the rubber-band-straighten- 
ing transform, was used to transform a 
40-pixel-wide region that surrounded the 
segmented mass boundary into a rectan- 
gular region. After transformation, the 
mass margin became approximately par- 
allel, and any spicules that were radiating 
from the mass became approximately per- 
pendicular, to the long dimension of the 
rectangular region. The rubber-band- 
straightening transform enabled the spic- 
ules to be aligned approximately in a 
uniform direction and thus facilitated the 
extraction of texture features from the 
margin of the mass. An example of a 
rubber-band-straightening-transformed 
image is shown in Figure 2. 

Two types of texture features were 
found to be useful for classification. The 
first set of features included eight texture 
measures derived from the spatial gray- 
level dependence matrices of the rubber- 
band-straightening-transformed image. A 
spatial gray-level dependence matrix ele- 
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Figure 3. Histogram of the test discriminant scores of the 253 masses 
obtained from the linear discriminant classifier by using a "leave one 
case out" training and test resampling scheme. For this classifier, a 
smaller discriminant score corresponded to a higher likelihood of 
malignancy. The discriminant scores were used as the decision 
variable in the ROC analysis of classification performance. 
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merit p9,d(',/) is the joint probability of the 
occurrence of gray levels i and / for pixel 
pairs that are separated by a distance d 
and at a direction 0 (22). For analysis of 
the masses, the spatial gray-level depen- 
dence matrices were constructed for 10 
pixel distances {d = 1, 2, 3, 4, 6, 8,10,12, 
16, 20 pixels) and in four directions (0°, 
45°, 90°, 135°) relative to the mass bound- 
ary. Therefore, a total of 320 spatial gray- 
level dependence texture features were 
extracted. 

The second set of texture features was 
derived from the run length statistics 
matrices of the horizontal and vertical 
gradient images of the rubber-band- 
straightening-transformed margin region. 
Five texture measures were extracted from 
the run length statistics matrix in each of 
the two directions (0° or 90°) on each 
gradient image. A total of 20 run length 
statistics texture features were thus ob- 
tained. Therefore, we had a total of 340 
features from the two types of texture 
measures. 

A stepwise linear discriminant feature 
selection procedure (23) was used to se- 
lect the most effective features from the 
available feature set. A total of 41 features 
were selected. The selected features were 
input into the Fischer linear discriminant 
classifier (24) as predictor variables. A 
"leave one case out" resampling scheme 
was used to train and test the classifier. A 
histogram illustrating the test discrimi- 
nant scores of the 253 masses is shown in 
Figure 3. For this classifier, a smaller dis- 
criminant score corresponded to a higher 
likelihood of malignancy. By using the 
test discriminant score as the decision 
variable, the performance of the com- 
puter classifier could be evaluated by us- 
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RELATIVE MALIGNANCY RATING 
Figure 4. Binormal distribution fitted to the histogram of the 
discriminant scores of the malignant and benign masses. The discrim- 
inant scores were linearly transformed into a relative malignancy 
rating ranging from 1 to 10, where 1 corresponded to the most benign 
rating and 10 corresponded to the most malignant rating. This 
binormal distribution was shown to the observers during the training 
session to explain the rating scale of the computer classifier. 

ing ROC analysis (17,25,26) and com- 
pared with that of the radiologists, as 
described later. 

Relative Malignancy Rating 
of the Masses 

For the observer performance study, we 
provided a relative malignancy rating of 
each mass to the observer during the 
reading session with CAD. The relative 
malignancy rating was obtained by tak- 
ing a linear transformation of the com- 
puter classifier's decision variable to a 
range of 1-10 and rounding the value to 
the nearest integer. The transformation 
also reversed the relative magnitude of 
the decision variables so that 1 corre- 
sponded to the highest benignity rating, 
and 10 corresponded to the highest malig- 
nancy rating. 

The purpose of the transformation was 
to provide a simple and intuitive relative 
scale for the observer. Because the trans- 
formation was linear and monotonic, the 
distributions of the normal and abnormal 
samples, as well as their ROC curves, were 
not affected, with the exception of a 
small error caused by making the deci- 
sion variables discrete. Furthermore, the 
slope a and intercept b parameters that 
were fitted to the transformed discrimi- 
nant scores for the normal and abnormal 
samples by using the LABROC program (26) 
were used to generate a binormal distribu- 
tion. The fitted binormal distribution with 
the relative malignancy rating on a 1-10 
scale (Fig 4), together with the computer's 
ROC curve, were shown and explained to 
the observers during a training session. 

Observer Performance Study 

Two ROC experiments (27) were con- 
ducted: The masses were evaluated horn a 
single view in the first experiment and 
from two views in the second experi- 
ment. The location of the biopsy-proved 
mass was marked on each image so that 
the correct mass was evaluated by all 
observers. The observers were instructed 
to ignore any other possible masses on 
the images. Six radiologists (M.A.H., 
M.A.R., T.E.W., D.D.A., C.P., J.S.N.) who 
are approved by the Mammography Qual- 
ity Standards Act and have 7-20 years of 
experience in interpreting mammograms 
participated in the observer performance 
experiments. 

There were two reading sessions in 
each experiment—one with CAD and the 
other without CAD. The observers were 
asked to rate the likelihood of malig- 
nancy of the masses on a 10-point confi- 
dence rating scale under all reading condi- 
tions. In the first session, half the 
observers interpreted the images without 
CAD, and the other half interpreted them 
with CAD. The two reading sessions in 
the same experiment were separated by at 
least 3 weeks, and the two experiments 
were separated by 6 months. For all four 
reading sessions, the observer had unlim- 
ited time to read each case. To estimate 
the average reading time per case for each 
observer, the reading time for each case 
was recorded by using a stopwatch. 

In the first experiment, the data set of 
253 single-view mammograms was di- 
vided into a training set of 15 mammo- 
grams and a study set of 238 mammo- 
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Figure 5. ROC curve for computerized classi- 
fication of the 238 masses used in the observer 
performance study with single-view reading. 
The computer's ROC curve can be compared 
with the radiologists' ROC curves obtained 
from the single-view reading experiment illus- 
trated in Figures 6 and 8. 

grams (117 benign, 121 malignant). In 
each reading session, training was con- 
ducted before the reading of the study 
images. For the reading session with CAD, 
the fitted binormal distributions of the 
computer rating scores (Fig 4) for the 
entire data set were explained to the 
observer during training to familiarize 
the observer with the computer's rating 
scale. The computer rating of the mass 
was displayed on each image. After read- 
ing each training image, the observer was 
told the results of biopsy of the mass. 

Each observer read the entire data set in 
one reading session. The order of the 
study images was randomized by a ran- 
dom number generator. The random se- 
quence was different for each observer 
and for each reading session by the same 
observer. For the reading session with 
CAD, the observer was free to look at the 
computer rating, which was displayed on 
the image, either before or after estimat- 
ing the likelihood of malignancy of the 
mass. However, each observer was asked 
to always read the computer rating before 
making a final decision. The observer was 
not informed of the pathologic results of 
any mass on the study images. 

The second experiment was very simi- 
lar to the first experiment. From the 238 
single-view mammograms, 76 matched 
pairs (37 benign, 39 malignant) of cranio- 
caudal and mediolateral oblique or lateral 
views were found. Another six pairs of 
two-view mammograms were identified 
from the rest of the images and used as 
training cases. The remaining mammo- 
grams were either single-view images or 
additional views of the pairs already cho- 

sen, so they were not used in this experi- 
ment. In this experiment, the observers 
were not informed of the pathologic re- 
sults of any study case in any reading 
session. The 76 pairs of mammograms 
were read in one reading session by each 
observer. 

For the reading session with CAD, the 
rating of the mass in each view was 
displayed on the respective image. The 
computer ratings of the mass on the two 
views were generally different. It was up 
to the observer to decide how to merge 
the two-view information. Observers were 
asked to give a single rating of the mass 
after reading both views. 

ROC Analysis 

The confidence ratings of each ob- 
server obtained from each reading condi- 
tion were analyzed by using ROC method- 
ology, and the classification accuracy was 
quantified by using the area under the 
ROC curve, Az. A maximum likelihood 
estimation of the binormal distribution 
was fitted to the confidence ratings by 
using the LABROC program. This program 
provides an estimate of the Az and of the a 
and b parameters of the ROC curve. The 
statistical significance of the difference in 
Az between the reading with CAD and 
that without CAD was estimated with 
two methods: One was the Student paired 
rtest for observer-specific paired data; the 
other was the Dorfman-Berbaum-Metz 
method for analysis of multireader, multi- 
case ROC data (28). The statistical signifi- 
cance of the difference in Azfor reading 
single-view and two-view mammograms 
was estimated by using the Student paired 
t test for the six observers. The Student 
paired ttest takes into account the statisti- 
cal variation of readers, whereas the Dorf- 
man-Berbaum-Metz method considers 
both reader variation and case sample 
variation by means of an analysis of vari- 
ance approach. Therefore, the results of 
Dorfman-Berbaum-Metz analysis can be 
generalized to the population of readers 
as well as to the population of case 
samples. 

Positive Predictive Value 

An ROC curve represents the entire 
range of operating conditions of a diag- 
nostic process and is independent of dis- 
ease prevalence. When the disease preva- 
lence is known, any operating point on 
an ROC curve can be used to derive the 
PPV and the corresponding false-negative 
fraction (false-negative fraction = 1 - 

true-positive fraction) on the basis of the 
following relationship: PPV = TPF x P(M)/ 
[TPF x P(M) + FPF x P(B)], where TPF is 
the true-positive fraction, FPF is the false- 
positive fraction at the chosen decision 
threshold, and P(M) and P(B) are the 
prevalences of malignant and benign 
cases, respectively. By varying the deci- 
sion threshold, the dependence of the 
PPV on the false-negative fraction can be 
derived. 

Because our data set did not include 
masses on which biopsy had not been 
performed, the ROC curves obtained in 
this study cannot be generalized to pre- 
dict the performance of the computer 
classifier and radiologists in clinical prac- 
tice. However, to demonstrate the pos- 
sible effect of CAD on the PPV in the 
population of masses in which biopsy is 
likely to be performed under the current 
clinical criteria, we can estimate the PPV 
by using the prevalence of the malignant 
and benign masses in this patient group. 
Because the PPV of masses sent for biopsy 
ranges from about 25% to 44% in general 
and from about 25% to 30% at our institu- 
tion, for the purposes of our estimation, 
we assumed that the P(M) was 25% and 
the P(B) was 75% in this population. A 
higher prevalence of malignant cases 
would cause an increase in the PPV, but 
the trend between the PPV curves with 
and without CAD would be similar. 

RESULTS  

The ROC curve illustrating the perfor- 
mance of the computer classifier for the 
238 study mammograms is shown in 
Figure 5. The ROC curve for the entire set 
of 253 mammograms (not shown) was 
almost identical to that of the 238 study 
cases; this indicates that the 15 training 
cases were typical of the 238 cases used in 
the study. The Az values (± SD) for both 
ROC curves were 0.92 ± 0.02. 

For the first experiment of reading the 
238 single-view mammograms, the ROC 
curves for the readings by the six radiolo- 
gists both without and with CAD are 
shown in Figures 6a and 6b, respectively. 
The Az values of the six radiologists for 
the readings with and without CAD are 
listed in Table 1. 

For the second experiment of reading 
the 76 pairs of two-view mammograms, 
the ROC curves for the readings by the six 
radiologists both without and with CAD 
are shown in Figures 7a and Figure 7b, 
respectively. The Az values of the six 
radiologists in this experiment are also 
listed in Table 1. 
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Figure 6.   ROC curves for the six observers for single-view reading of the masses (a) without CAD and (b) with CAD. (a, b) R1 = reader \,R2 = reader 
2, R3 - reader 3, R4 = reader 4, R5 = reader 5, R6 = reader 6. Five of the six observers achieved an increase in the area under the ROC curve, Az, with 

The average ROC curve was derived 
from the average a and b parameters of 
the six individual ROC curves for a given 
reading condition (27). The average ROC 
curves for the four reading conditions are 
shown in Figure 8. The Az values of the 
average ROC curves are listed in Table 1. 

For the reading of the single-view mam- 
mograms, the performance of the com- 
puter classifier was comparable to that of 
the radiologist (reader 2) who had the 
highest classification accuracy (compare 
Figs 5 and 6) and higher than the average 
performance of the six radiologists (com- 
pare Figs 5 and 8). When the radiologists 
read the images with the computer aid, 
the classification accuracy of five radiolo- 
gists improved (Table 1); the improve- 
ment in their Az values ranged from 0.04 
to 0.08. The average performance of the 
six radiologists became comparable to 
that of the computer classifier. The im- 
provement in the radiologists' classifica- 
tion accuracy by using CAD was statisti- 
cally significant (P = .022, Student paired 
t test; P = .020, Dorfman-Berbaum-Metz 
method). Reader 2 with CAD obtained an 
Az value of 0.96, which was higher than 
that obtained by the radiologist alone or 
by the computer alone. 

A trend similar to that with the single- 
view readings was observed with the two- 
view readings. The Az value of the com- 
puter classifier for the corresponding 152 

TABLE 1 
Areas under the ROC Curves for the Classification of Masses with and without 
CAD by the Six Radiologists 

Az (Single View)* Az (Two View)t 

Radiologist 
No. 

Without 
CAD 

With 
CAD 

Without 
CAD 

With 
CAD 

1 
2 
3 
4 
5 
6 

Ajfrom average a, b 
parameters 

0.84 ± 0.03 
0.92 ± 0.02 
0.86 ± 0.02 
0.79 ± 0.03 
0.86 ± 0.02 
0.89 ± 0.02 

0.87 

0.87 ± 0.02 
0.96 ± 0.01 
0.91 ± 0.02 
0.87 + 0.02 
0.92 ± 0.02 
0.87 ± 0.02 

0.91 

0.90 ± 0.03 
0.95 ± 0.02 
0.92 ± 0.03 
0.88 ± 0.04 
0.93 ± 0.03 
0.89 ± 0.04 

0.92 

0.93 ± 0.03 
0.97 ± 0.02 
0.93 ± 0.03 
0.95 ± 0.03 
0.97 ± 0.02 
0.93 ± 0.03 

0.96 

Note.—Data are the mean ± SD. 
* P = .022 for the difference between the Az values measured with CAD and those measured 

without CAD, as determined by using the Student two-tailed t test. P = .020 for this difference, as 
determined by using the Dorfman-Berbaum-Metz method. 

t P = .007 for the difference between Az values measured with CAD and those measured without 
CAD, as determined by using the Student two-tailed t test. P = .026 for this difference, as 
determined by using the Dorfman-Berbaum-Metz method. 

single-view masses was 0.91 ± 0.02. The 
classification accuracy of all six radiolo- 
gists improved when they read the mam- 
mograms with the computer aid. The 
increase in the Az values ranged from 0.01 
to 0.07. The improvement was statisti- 
cally significant (P = .007, Student paired 
t test; P = .026, Dorfman-Berbaum-Metz 
method). With CAD, two radiologists 
achieved an Az value of 0.97, which was 
higher than that obtained by the radiolo- 

gists alone or by the computer alone. 
These results indicate that the second 
opinion provided by the computer classi- 
fier might have strengthened the radiolo- 
gists' confidence in the interpretation of 
some difficult cases but had less influence 
on the radiologists' decision when the 
computer made mistakes or when the 
radiologists were confident about their 
decision. 

As can be seen from the data in Table 1, 
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Figure 7    ROC curves for the six observers for two-view reading of the masses (a) without CAD and (b) with CAD. (a, b) R1 = reader \,R2- reader 2, 
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Figure 8. Average ROC curve obtained from the average a and b 
parameters of the six individual ROC curves for each of the four 
reading conditions. An improved ROC curve was achieved with CAD 
in both the single-view and two-view reading experiments. 

the radiologists' accuracy in classifying 
masses by reading two-view mammo- 
grams was consistently higher than that 
by reading single-view mammograms (P = 
.008). This trend remained when they 
read the mammograms with CAD (P = 
.007). These findings are consistent with 

the clinical experience of the radiologists 
that at least two views of mammograms 
are needed to effectively evaluate a suspi- 
cious lesion. 

The PPV as a function of the false- 
negative fraction was derived from the 
fitted ROC curves under the assumption 

that the prevalence of malignant masses 
was 25% in the population of masses sent 
for biopsy. The PPVs estimated for the six 
observers who read the two-view mammo- 
grams with and without CAD are plotted 
in Figure 9. CAD would provide an im- 
provement in the PPV in the high false- 
negative fraction range for all observers 
except readers 2 and 5. The increase in 
the PPV at a decision threshold of "no 
missed malignant mass" (ie, false-nega- 
tive fraction = 0) varied over a wide 
range; the largest gain, 39%, would be 
achieved by reader 2, and the smallest 
gain, 0%, would be achieved by reader 4. 

DISCUSSION  

In the observer experiment of reading 
two-view mammograms with CAD, we 
presented the computer's rating of each 
view separately. The decision of how to 
merge the computer ratings of the two 
views was left to the radiologist. It is likely 
that the radiologists took the conserva- 
tive approach of using the highest malig- 
nancy rating of the two as the computer's 
overall rating. However, it also might 
have depended on whether the relative 
ranking between the two computer rat- 
ings agreed with the observer's opinion. 
In some cases, we observed that the radi- 
ologist's rating was very different from 
the computer's rating of either view. 
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Figure 9. PPV as a function of the false-negative fraction derived from the ROC curves for the six observers (Fig 7) The PPV was predicted for a 
population of masses in which biopsy was likely to be performed under current clinical criteria and by assuming the prevalence of malignant masses 
to be 25%. Rl = reader 1, R2 = reader 2, R3 = reader 3, R4 = reader 4, R5 = reader 5, R6 = reader 6 

Because decision making is a complex 
process, the simple approach of using the 
highest malignant rating or the average 
rating from multiple views may not be the 
method preferred by radiologists. The sepa- 
rate ratings that we used in this study would 
provide less biased information. Further in- 
vestigation is needed to determine the best 
approach of presenting the computer's rat- 
ings to radiologists in clinical practice. 

To obtain insight into how the radiolo- 
gists might use the two-view informa- 
tion, we compared the classification re- 
sults from their true two-view reading 
with those from a simulated two-view 
reading without the computer aid. The 
latter results were derived from ratings of 
single-view readings of the same 76 pairs 
of mammograms interpreted in experi- 
ment 2 by assuming two strategies—one 
in which the highest malignancy rating 
between the two ratings was used, and 
the other in which the average of the two 
ratings was used (Table 2). The Az values 
for these classification ratings derived 
from the single-view reading are listed in 
Table 2. The corresponding Az values for 
the computer classifier are also given in 
Table 2 for comparison. 

The Az values for the maximal rating 
and the average rating were similar. Four 
of the radiologists obtained higher Az 

values at the true two-view reading; the 
Az values obtained by the remaining two 
radiologists were lower than those ob- 
tained at the simulated two-view reading. 
Although the difference did not achieve 
statistical significance (P = .37) and both 
readings included intraobserver varia- 
tions, there seemed to be a slight trend 
toward the true two-view reading being 
more accurate than the simulated two- 
view reading. This may indicate that the 
radiologists used a more complex deci- 
sion-making process to interpret the two 
views of the masses than that of simply 
maximizing or averaging the ratings from 
each view. 

In this study, the discriminant scores of 
the masses given by the computer classi- 
fier were transformed into a relative malig- 
nancy rating. The relative malignancy 
rating scale and the distribution of the 
malignant and benign masses along the 
relative rating scale were explained to the 
observers in the training sessions. A rela- 
tive malignancy rating scale was used 
because the true likelihood of malig- 

TABLE 2 
Estimation of the Malignancy 
Classification of 76 Masses by 
Two-View Reading, as Simulated from 
Single-View Reading of 
Mammograms by Radiologists 
without CAD 

A2 

Radiologist 
No. 

Maximal 
Rating 

Average 
Rating 

1 
2 
3 
4 
5 
6 

Computer 

0.94 : 
0.94: 
0.84 : 
0.85 : 
0.88: 
0.91 : 
0.96 : 

0.03 
: 0.03 
0.05 
0.04 
0.04 
0.03 
0.02 

0.93 ± 0.03 
0.94 ± 0.03 
0.86 ± 0.04 
0.83 ± 0.05 
0.89 ± 0.04 
0.92 ± 0.03 
0.96 ± 0.02 

Note.—Data are the mean ± SD. Two strate- 
gies were used: In one, the highest of the 
malignancy ratings on each view was used; in 
the other, the average between the two rat- 
ings was used. 

nancy of the masses could not be esti- 
mated from a small data set, as will be 
explained. However, the relative rating 
scale provided by the computer was ad- 
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Figure 10. Histograms illustrate the confidence ratings of reader 5 obtained by reading 76 two-view mammograms (a) without CAD and (b) with 
CAD. The specificity of reader 5 at 100% sensitivity would increase from 5% (two of 37 masses) without CAD to 68% (25 of 37 masses) with CAD if an 
appropriate decision threshold were chosen. 

equate for measuring the relative perfor- 
mance of classification with and without 
CAD in an ROC study. 

If a computer classifier is trained and 
tested with very large data sets, and if 
both the malignant and benign cases 
represent random samples of the popula- 
tion, then the likelihood of malignancy 
of a classified mass can be estimated on 
the basis of the probability distributions 
of the classifier's test output scores and 
the prevalence of the two classes of masses 
in the patient population. However, with 
a relatively small data set, such as that 
used in this and other observer studies 
(14), there are limitations. First, the perfor- 
mance of a classifier trained with a small 
sample set may have large bias and vari- 
ance (29-31). Second, the data set in this 
study did not include masses on which 
biopsy was not performed, so it did not 
represent a random sample of the masses 
in the patient population. If our classifier 
were applied to all cases of solid masses in 
clinical practice, the probability distribu- 
tion of the test scores for the two classes 
of masses would be different from that of 
the current data set. 

If we ignore the patient population at 
large, it is possible to estimate the likeli- 
hood of malignancy of a mass on the 
basis of the probability distribution of the 
classifier output scores by using the preva- 
lence of the two classes of masses in this 
specific data set. However, the likelihood 
of malignancy derived in this way will be 
completely different from the true likeli- 
hood of malignancy of a mass in the 
patient population. This can be easily 
seen if one considers that the same mass 
with the same discriminant score will 
have a smaller likelihood of malignancy 

if it is analyzed within a data set that has a 
lower prevalence of malignant cases than 
that in the current data set. 

Training the participating radiologists 
with a "likelihood of malignancy" de- 
rived from a small data set for the ob- 
server experiment may mislead them if 
they encounter a similar mass in their 
clinical practice. We, therefore, preferred 
to use a "relative malignancy rating," 
which is independent of the prevalences 
of malignant and benign masses in the 
data set. As long as the same classifier and 
the same linear transformation are used 
for classifying masses, the relative malig- 
nancy rating for a given mass will remain 
the same, regardless of the types of other 
masses in the data set. When a computer 
classifier is implemented in a clinical 
setting and its performance can be estab- 
lished in the patient population, the true 
likelihood of malignancy of a given mass 
can be estimated and provided to the 
radiologist. The true likelihood of malig- 
nancy may be a more informative mea- 
sure for radiologists in the clinical applica- 
tion of CAD. 

For the reading of the 76 two-view 
mammograms, the results of the ROC 
study indicated an improvement in the 
Az value for all six radiologists when the 
computer aid was used. This indicates an 
overall increase in the separation of confi- 
dence rating distributions between the 
malignant and benign cases. The histo- 
grams in Figure 10 illustrate the distribu- 
tions of confidence ratings with and with- 
out CAD for reader 5, who achieved the 
second greatest improvement in both the 
Az value (Table 1) and the separation of 
malignant from benign distributions. 
Without CAD, this reader's ratings of the 

malignant cases ranged from 2 to 10. This 
is consistent with the fact that biopsy was 
performed in all masses in the data set to 
avoid missing the malignant cases. With 
CAD, there was marked improvement in 
the separation of the two distributions. It 
is possible to set a decision threshold at a 
confidence rating of 4, below which bi- 
opsy would not need to be performed and 
no malignant masses would be missed. 
The number of benign masses that could 
be identified without missing a malig- 
nant mass by setting an appropriate 
threshold would increase by 23 (out of 76 
cases) for reader 5. Five of the six radiolo- 
gists in our ROC study achieved an im- 
provement in distinguishing benign from 
malignant masses, and one radiologist 
had no difference. Although the improve- 
ment of the five radiologists varied over a 
wide range, from one to 25 cases, this 
result indicates a strong possibility that 
CAD can be used to reduce the number of 
unnecessary biopsies. 

The large variation in improvement 
among the radiologists may have been 
due to the different degrees of confidence 
that they had in the computer aid. As 
with any new diagnostic tool, this confi- 
dence is influenced by the experience the 
radiologist has with the tool. Although 
the radiologists received training before 
the reading sessions, the high variability 
in confidence was not unexpected, be- 
cause this ROC study was the first in- 
stance in which they had worked with 
the computer aid. Their confidence levels 
may have also been reflected in the rela- 
tively low accuracy of classification by 
some radiologists with CAD compared 
with that of the computer classifier alone. 

If a radiologist can increase his or her 
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confidence in the performance of a com- 
puter aid by gaining more extensive clini- 
cal experience, then he or she will likely 
be able to find the most effective way of 
merging his or her judgment with the 
computer's rating and thus reduce both 
interobserver and intraobserver variabil- 
ity. Because a radiologist who uses CAD 
can establish a meaningful decision 
threshold for biopsy only after becoming 
familiar with the sensitivity and specific- 
ity of working with CAD, the radiologists 
in this study were not asked to decide 
whether biopsy should have been per- 
formed on a mass. Rather, we focused on 
the evaluation of changes in the sensitiv- 
ity and specificity of the radiologists' 
classification of masses when CAD was 
used. 

In this ROC study, all six observers 
were attending radiologists with exten- 
sive experience in the interpretation of 
mammograms. It is possible that the com- 
puter aid may be even more useful to 
radiology residents or radiologists with 
less experience in mammography. The 
effect of CAD on mammographic interpre- 
tation by less-experienced readers will be 
a subject of investigation in future stud- 
ies. 

The observers were allowed unlimited 
time to read each case in this ROC study. 
To obtain an estimate of the change in 
reading time with CAD, we recorded the 
reading time of each observer in each 
reading session by using a stopwatch. For 
the single-view reading experiment, the 
average reading time per image without 
CAD varied from 4.3 seconds to 17.1 
seconds (mean time for the six observers, 
7.8 seconds). The average reading time 
per image with CAD varied from 4.2 
seconds to 17.3 seconds (mean time, 7.3 
seconds). For the two-view reading experi- 
ment, the average reading time per pair of 
images without CAD varied from 6.6 sec- 
onds to 16.0 seconds (mean time, 10.4 
seconds). The average reading time per 
pair of images with CAD varied from 7.6 
seconds to 27.1 seconds (mean time, 13.5 
seconds). 

The reading time essentially did not 
change with use of the computer aid for 
the single-view readings. For the two- 
view readings, the radiologists took longer 
with CAD, probably because they had to 
merge the two computer ratings and 
merge the computer ratings with their 
own evaluations. Further investigation is 
needed to determine whether there is a 
trade-off between the radiologist's effi- 
ciency and the method of presenting the 
computer rating and whether the reading 
time with CAD will depend on the experi- 

ence that the radiologist has with the 
computer information. 

In the observer study, we used laser- 
printed mammograms instead of the origi- 
nal mammograms for the reading experi- 
ments. A major reason is that it is difficult 
to keep all the original mammograms 
together for the entire period of the study 
because they are part of active patient 
files and thus often recalled for compari- 
son with new studies or for other clinical 
reasons. Because the maximum optical 
density of laser-printed images was 3.1 
for the laser imager used, the contrast on 
the printed mammograms was about 20% 
lower than that on the original mammo- 
grams. Although the image quality was 
slightly lower than that of the original, 
the laser-printed digitized images were 
judged to be adequate for reading the 
details of the masses by the participating 
radiologists. The laser-printed image set 
might also be considered as one that had 
slightly more subtle masses than the origi- 
nal set of images. Because the relative 
performance of two modalities is mea- 
sured in ROC experiments, and because 
the readings both with and without CAD 
in this study were conducted with the 
same set of printed images, the relative 
performance of the two readings should 
be valid. It should also be noted that in 
order for a computer aid that uses auto- 
mated image analysis to be widely ac- 
cepted, direct digital mammography 
would have to be the imaging modality 
in clinical use. Laser-printed images or 
soft-copy monitors will be the display 
medium for the digital mammograms. 
The use of laser-printed images for this 
ROC study was therefore practical. 

In our observer performance experi- 
ment, we found that CAD improved the 
radiologists' ability to distinguish malig- 
nant and benign masses. This is consis- 
tent with the results of other studies 
(11,14) in which a statistically significant 
improvement (P < .001 in both studies) 
in the radiologists' classification accuracy 
by using CAD was found. The results of 
the former study (11) further showed that 
the PPV of a recommendation for biopsy 
by the radiologists was significantly in- 
creased (P < .001). In our approach, the 
computer classifier automatically ex- 
tracted image features, whereas in the 
other studies, the computer classifier used 
the radiologist's evaluation and other pa- 
tient information as input. Therefore, it 
appears that CAD can provide a useful 
second opinion to radiologists, either by 
consistently extracting and analyzing the 
image features or by optimally weighting 
various diagnostic factors and thereby 

improving the consistency in the deci- 
sion-making process. This suggests that a 
computer classifier that combines both 
approaches—that is, automatically ex- 
tracts image features and optimally 
merges them with the radiologist's evalu- 
ation and patient information—may be 
even more effective for breast cancer diag- 
nosis. The latter step will also improve 
the radiologist's utilization of the com- 
puter rating on the basis of the computer- 
extracted features; this utilization was 
found to have large interobserver varia- 
tion in our ROC experiment. 

In conclusion, an ROC study of the 
effects of CAD on radiologists' classifica- 
tion of malignant and benign masses on 
mammograms was conducted. The re- 
sults showed that CAD can provide a 
statistically significant improvement in 
the classification accuracy—that is, in the 
Az value—for both single-view reading 
(P = .022) and two-view reading (P = 
.007). The improved separation between 
the confidence ratings of the malignant 
masses and those of the benign masses 
indicates the potential that CAD may 
reduce the rate of biopsy of benign masses 
when decision thresholds are properly 
chosen by the radiologists. The decision 
threshold may vary among radiologists, 
as in the case of mammographic interpre- 
tation without CAD, and can be set after 
the radiologist working with CAD has 
established his or her sensitivity and speci- 
ficity with this approach through clinical 
experience. 

Further studies are needed to evaluate 
the effects of CAD on the accuracy of 
radiologist classification of masses in clini- 
cal settings in which the prevalence of 
malignant masses is different from that in 
a laboratory data set and the likelihood of 
malignancy of a mass can be estimated by 
the computer classifier. In the two-view 
reading ROC experiment, the reading time 
per case increased by about 30% with the 
use of CAD. The dependence of the radi- 
ologist's efficiency in reading with CAD 
on the presentation method and on the 
reader's experience in using the computer 
information also warrants further investi- 
gation. 
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Combined adaptive enhancement and region-growing segmentation 
of breast masses on digitized mammograms 
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As an ongoing effort to develop a computer aid for detection of masses on mammograms, we 
recently designed an object-based region-growing technique to improve mass segmentation. This 
segmentation method utilizes the density-weighted contrast enhancement (DWCE) filter as a pre- 
processing step. The DWCE filter adaptively enhances the contrast between the breast structures 
and the background. Object-based region growing was then applied to each of the identified struc- 
tures. The region-growing technique uses gray-scale and gradient information to adjust the initial 
object borders and to reduce merging between adjacent or overlapping structures. Each object is 
then classified as a breast mass or normal tissue based on extracted morphological and texture 
features. In this study we evaluated the sensitivity of this combined segmentation scheme and its 
ability to reduce false positive (FP) detections on a data set of 253 digitized mammograms, each of 
which contained a biopsy-proven breast mass. It was found that the segmentation scheme detected 
98% of the 253 biopsy-proven breast masses in our data set. After final FP reduction, the detection 
resulted in 4.2 FP per image at a 90% true positive (TP) fraction and 2.0 FPs per image at an 80% 
TP fraction. The combined DWCE and object-based region growing technique increased the initial 
detection sensitivity, reduced merging between neighboring structures, and reduced the number of 
FP detections in our automated breast mass detection scheme. © 1999 American Association of 
Physicists in Medicine. [S0094-2405(99)00808-l] 

Key words: computer-aided diagnosis, digital mammography, breast mass detection, density- 
weight contrast enhancement, region growing 

I. INTRODUCTION 

Mammographic screening has proven to be an effective 
method for early detection of breast cancer. Women in a 
regular mammographic screening program have a statisti- 
cally significant reduction in breast cancer mortality when 
compared to women not in such a program.1 In addition, 
independent double reading by two radiologists has proven 
to significantly increase the sensitivity of mammographic 
screening.2 Therefore, regular screening and double reading 
would appear to be a sensible approach for breast cancer 
detection. While regular screening is emphasized in health 
care programs, the higher cost and increased workload on the 
radiologists may make double reading by two radiologists 
impractical in a general screening situation. Computer-aided 
diagnosis (CAD) is one alternative that could allow a large 
number of mammograms to be double read by a single radi- 
ologist aided by the computer. This technique may improve 
the accuracy of both detection and characterization of breast 
lesions. 

Many researchers have been interested in computerized 
analysis of mammograms3 and a number of groups have de- 
veloped algorithms for automated detection of breast masses. 
The detection of spiculated masses has been of particular 
importance because of its high likelihood of malignancy. 
Karssemeijer et a/.,4 Kobatake etal.,5 and Kegelmeyer 
et al.6 have all proposed methods for detecting spiculated 
masses on digitized mammograms. However, since a number 

of malignant masses are not spiculated, other groups have 
tackled the general problem of identifying all types of breast 
masses on digitized mammograms.3'7-11 

Our research group has reported on a method for auto- 
matically detecting masses on digitized mammograms.1012 

The method employed multiple stages of density-weighted 
contrast enhancement (DWCE) segmentation. The DWCE 
segmentation was first applied to the full mammogram, and 
then reapplied to local regions within the mammogram to 
improve object border definition. A final object splitting 
stage was employed to eliminate merging between neighbor- 
ing or overlapping breast structures. False positive (FP) re- 
duction based on extracted morphological features was ap- 
plied after each segmentation step with texture analysis used 
as a final arbitrator between masses and normal structures. 
The segmentation was evaluated on 168 digitized mammo- 
grams and it achieved a performance of 4.4 FPs per image at 
a 90% true positive (TP) detection fraction and 2.3 FPs per 
image at an 80% TP detection fraction.10 

Our approach to mass detection has been to first identify 
all significant structures within the breast region using a glo- 
bal segmentation technique and then refine the initial object 
borders using local processing. Finally, we differentiate be- 
tween true masses and normal structures using morphologi- 
cal and texture information. Our method is therefore differ- 
ent from other detection algorithms that utilize the object 
shape information for initial detection. The disadvantage of 
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our combined global and local detection approach is that a 
large number of normal structures are identified in the initial 
stage. This can lead to additional FPs if the classification is 
suboptimal. However, the advantage of this approach is that 
it can identify difficult masses since the initial detection is 
not based on shape information. The shape information is 
still used in the classification stage to reduce FPs. 

In this paper, we present an improved version of our two- 
stage DWCE segmentation approach. This new scheme was 
designed to both increase specificity and reduce the overall 
complexity of the segmentation. A primary motivation is to 
develop a method for eliminating the merging between 
neighboring structures in the local DWCE processing step 
and thus improve local segmentation. We introduce an 
object-based region-growing technique to perform this task. 
Improved local segmentation serves a number of purposes. 
First, it improves the morphological and texture information 
used for FP reduction as well as eliminates the need for the 
shape-based splitting step. It also enables us to eliminate two 
morphological FP reduction steps. This significantly reduces 
the overall complexity of the detection program and should 
lead to a more practical implementation in a general clinical 
setting. In this paper, we summarize the intermediate and 
overall detection performance of the improved mass segmen- 
tation algorithm and describe some of its limitations. 

II. METHODS 

A. Database 

The clinical mammograms used in this study were se- 
lected from the files of patients who had undergone biopsy at 
the University of Michigan Hospital. The mammograms 
were acquired with American College of Radiology (ACR) 
accredited mammography systems. Kodak MinR/MRE 
screen/film systems with extended cycle processing were 
used as the image recorder. The mammography systems have 
a 0.3-mm focal spot, a molybdenum anode, 0.03-mm thick 
molybdenum filter, and a 5:1 reciprocating grid. The selec- 
tion criterion used by the radiologists was simply that a 
biopsy-proven mass existed on the mammogram. The data 
set consisted of 253 mammograms from 102 patients, and it 
included 128 malignant and 125 benign masses. Sixty-three 
of the malignant and six of the benign masses were judged to 
be spiculated by a MQSA approved radiologist. The size of 
the masses ranged from 5 to 29 mm (mean size=12.5 mm), 
and their visibility ranged from 1 (obvious) to 5 (subtie) 
(mean=2.1). Figures 1 and 2 show the histograms of mass 
size and mass visibility for the data set.13 These distributions 
characterize the difficulty and diversity of the cases con- 
tained in the data set. 

The mammograms were digitized with a LUMISYS DIS- 
1000 laser film scanner with a pixel size of 100 fim and 12 
bit gray level resolution. The gray levels were linearly pro- 
portional to optical density in the 0.1 to 2.8 optical density 
unit (O.D.) range. The slope was 0.001 O.D./pixel value. The 
slope gradually fell off in the 2.8 to 3.5 O.D. range.1013 A 
large pixel value corresponds to a low optical density with 
this digitizer. 

30 

CO 25 
lli 
CO 
(0 
< 20 
E 
IL 
o 15 
DC 
lli 
00 10 

!       !      ! 
MM MALIGNANT 
l 1 BENIGN 

■|1  ■ Ji 1 -LM LJ. 
9      13     17     21 
MASS SIZE (MM) 

25     29 

FIG. 1. Histograms of mass size for the 253 masses contained in our data set. 
Mass sizes were measured as the largest axis of the mass by an experienced 
breast radiologist. 

The location and extent of all the biopsy-proven masses 
were marked on the original films. The radiologist then iden- 
tified both the centroid of the lesion and the smallest bound- 
ing box containing the entire lesion using an interactive im- 
age manipulation tool on a workstation. Both procedures 
were performed using the original marked film as a guide. 
The lesion centroid was used to identify TP detections after 
the morphological FP reduction step. If a segmented object 
was within 4 mm of the mass centroid, it was considered a 
TP. All other segmented objects were considered as FPs. The 
final free-response receiver operating characteristic (FROC) 
curves following texture-based classification used the more 
precise mass bounding box for TP identification. A region 
was considered a TP only when it contained more than 50% 
of the mass bounding box. 

12 3 4 5 
MASS SUBTLETY RATING 

FIG. 2. Histograms of mass subtlety for the 253 masses contained in our data 
set. Mass subtleties were rated by an experienced breast radiologist from 1 
(obvious) to 5 (subtle). 
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C. Object-based region-growing segmentation 

1. Initial gray-scale region growing 

Before gradient-based region growing was applied, an ini- 
tial set of seed objects was identified. This was accomplished 
by first identifying all local maxima in the original gray-scale 
image which occurred within the extent of the DWCE ob- 
jects. Local maxima were defined using the ultimate erosion 
technique described by Russ.15 In simple terms, a pixel was a 
local maximum if and only if its value was at least as large as 
all nearest neighbor pixel values. All maxima were identified 
and grown into larger objects by a simple gray-scale region 
growing technique as follows. Gaussian smoothing (cr=2.0) 
was applied to the gray-scale image, and a maximum and a 
minimum pixel value threshold were specified to select a 
range of acceptable pixel values. The thresholds were de- 
fined as 

Digitized Mammogram 

v 

DWCE Segmentation 

i' 

Object-Based 
Region Growing 

v 

FP Reduction 

1 
FROC Analysis 

FIG. 3. Block diagram of the breast mass segmentation scheme. A digitized 
mammogram undergoes DWCE segmentation followed by object-based re- 
gion growing and then morphological and texture classification. The perfor- 
mance of the segmentation scheme was evaluated by FROC analysis. 

B. Density-weighted contrast enhancement 
segmentation 

The block diagram for the proposed detection scheme is 
shown in Fig. 3. Global DWCE segmentation was used to 
identify an initial set of breast structures on the digitized 
mammograms. These objects were then used as seed loca- 
tions to perform gradient-based region growing. A thorough 
description of the DWCE technique can be found in the 
literature.101214 Briefly, the DWCE technique employs an 
adaptive filter to enhance the local contrast and thus accen- 
tuate mammographic structures in an image. As the term 
implies, the parameters of the enhancement filter are based 
on the local density within the image and the filter is applied 
to the image on a pixel-by-pixel basis. The filter is designed 
to suppress very low contrast values, to emphasize the low to 
medium contrast values and to just slightly deemphasize the 
high contrast values. The effect of suppressing the extremely 
low contrast values is to reduce bridging between adjacent 
breast structures. Pixels with low to medium contrast values 
are enhanced so that more subtle structures can be detected. 
Finally, the slight deemphasis of the high contrast structures 
is included to provide a more uniform intensity distribution 
for detected structures. After contrast enhancement, 
Laplacian-Gaussian edge detection is applied and all en- 
closed objects are filled to produce a set of detected struc- 
tures for the image. The DWCE segmentation is applied to 
mammograms that have been smoothed and subsampled 
from their original 100 fim pixel size to an 800 /an pixel 
resolution.10 The DWCE stage has been found to be effective 
in detecting most breast structures including a significant 
portion of breast masses. However, the DWCE borders usu- 
ally fall well inside the true borders of an object and a sig- 
nificant number of adjacent structures are merged into single 
objects. This occurs most frequently when the adjacent 
breast structures have some tissue overlap. 

and 

"> =1.01G?EP (1) 

G™1 = 0.99G)JEP, (2) 

where G^ was the pixel value of the ith maximum and 
G™1 and G™"1 were the maximum and minimum pixel 
value thresholds, respectively. All pixels within a radius of 
20 pixels from a maximum location and with a pixel value 
inside the defined range were considered to be part of the 
object. This was repeated for all maxima within an image. 
Figures 4(a)-4(d) show an original gray-scale image and 
corresponding images with the DWCE objects, the local 
maxima, and the gray-scale region-grown objects high- 
lighted. The expanded objects were used as seeds for the 
gradient-based region growing, described below. 

2. Gradient images 

A mammogram at 200 /on resolution was used in the 
gradient-based region-growing stage. The 200 /an resolution 
image was obtained by averaging 2X2 pixels from the origi- 
nal image. The reduced resolution image had to be smoothed 
again before gradient filtering because the mammographic 
tissue produced gradients not only within individual breast 
structures but also throughout the background portions of the 
image. Figure 5(b) shows the gradient magnitude image re- 
sulting from vertical and horizontal Sobel filtering applied to 
the 200 /on gray-scale image shown in Fig. 5(a). It clearly 
demonstrates the large number of gradients throughout the 
image and the difficulty in applying object-based region 
growing without additional smoothing. For our application, 
the smoothing needed to reduce the spurious gradients was 
accomplished by frequency-weighted Gaussian (FWG) filter- 
ing. Frequency-weighted filtering is a technique in which all 
pixels within the image are split into a base and a residual 
term. The residual is either positive or negative. This tech- 
nique produces three subimages from an original image, F, 
where 

F=FF~ + Fstib+ + F, sub (3) 
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FIG. 4. Objects produced by each segmentation step for a typical mammogram from our data set: (a) the original mammogram with the mass location 
identified, (b) the DWCE objects, (c) the local maxima, (d) the objects obtained with gray-scale region growing, (e) the objects obtained with gradient-based 
region growing, and (f) the objects remaining after morphological FP reduction. 

The first filter component, FF, is a filtered version of the 
original image. In our case, a Gaussian filter, G{/ju=Q,a 
= 10), was used. The second and third images are the posi- 
tive and negative residual images of F—FF, respectively. 
The ^sub+ residual is nonzero where the image intensity is 
larger than the local background and Fsub- is nonzero where 
the image intensity is smaller than the local background. For 
a particular image pixel, 0,y), the residual images are de- 
fined as 

^sub+C*>y)= 
F(x,y)-FF(x,y),    F(x,y)>FF(x,y), 

0,    otherwise, 
(4) 

and 

^sub-(*>y)- 
F(x,y)-FF(x,y),    F(x,y)<FF(x,y), 

0,    otherwise. 
(5) 

Two FWG filters were designed for sequentially processing 
the mammograms. The first FWG filtering step reduced the 
gradients within the breast structures and produced an inter- 
mediate image, F], which had the form 

F1(F) = |FF(F) + iFsub+(F), (6) 

where the FF and Fsub+ images were derived from F, the 
original 200 fim resolution gray-scale image. A second FWG 
filtering step was used to eliminate gradients in the breast 
background. It produced image F2, which had the form 

Wl) = ^Sub+(^l), (7) 

where the Fsub+ image was derived from image Fj. The 
result of applying the two FWG filters to the original mam- 
mogram in Fig. 5(a) is shown in Fig 5(c). In this image, a 
significant amount of background has been eliminated and 
the gradients in the remaining structures have been reduced. 
Horizontal and vertical Sobel filters15 were then applied to 
image F2 and the magnitude calculated to produce a gradient 
image as shown in Fig. 5(d). Finally, 5X5 median filtering 
was used to produce the final gradient image shown in Fig. 
5(e). This image was used in the gradient-based region- 
growing step. 

3. Final gradient-based region growing 
Each initially grown object (described in Sec. IIC 1) was 

again grown by applying an adaptive technique to the gradi- 
ent image, F2, described in Sec. IIC 2. The region-growing 
technique was based on the work of Chang and Li16 and then- 
adaptive homogeneity test for determining the similarity be- 
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FIG. 5. Processing steps used to define the gradient images: (a) the original mammogram with the mass location identified; (b) the gradient magnitude image 
obtained from horizontal and vertical Sobel filtering of the original mammogram; (c) the image resulting from FWG filtering of the original mammogram; (d) 
the gradient magnitude image resulting from horizontal and vertical Sobel filtering of the FWG image; and (e) the image resulting from median filtering of 
the gradient magnitude image. 

tween regions. We have modified this technique to perform 
object-based region growing. For a mammogram, the corre- 
sponding gradient image was smoothed using a Gaussian 
filter (<r=2.0). A cumulative distribution function (CDF) of 
pixel values was then calculated from the smoothed gradient 
image for each object. For each object, the pixel value 
thresholds were defined as 

G^={s:CDF,0(g) = 1.0} 

and 

G^={g:CDF„0(g) = 0.0}, 

(8) 

(9) 

where g was a pixel value and CDF* 0(g) was the cumulative 
pixel value distribution within the border of object i and for 
initial growing iteration 0. The initial growing thresholds 
simply correspond to the maximum and minimum pixel val- 
ues within an object. Single-pixel growing was performed on 
all objects using the thresholds for each individual object to 
define a range of acceptable pixel values. In this context, 
single-pixel growing meant growing was limited to only 
those pixels directly connected to the initial border. Once 
single-pixel growing was applied to all objects within the 
image, the thresholds were adjusted and a second iteration of 
growing was performed. Iterative single-pixel growing was 

employed to limit the influence of the order that objects were 
grown within an image. The thresholds used for the fth ob- 
ject during the jth growing iteration were defined as 

G^F={g:CDFLj(g)=l.O} (10) 

and 

G^F=\g:CDPiJ(g)=j5 (11) 

where CDF, ;(g) was the cumulative pixel value distribution 
from the smoothed gradient image within the current borders 
of object i. Single pixel growing was applied to all objects 
within the image. This iterative procedure was repeated until 
no more connected pixels had a value within the appropri- 
ately defined range. Note that neighboring objects were not 
allowed to merge together during this region-growing stage 
so that growing between adjacent objects stopped with at 
least a one pixel gap between them. Figures 4(d) and 4(e) 
show the initial seed objects and the final gradient grown 
objects for the example shown in Fig. 4(a). 
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FIG. 6. Flowchart of the FP reduction scheme. The images were separated 
into ten independent groups. Each group underwent morphological FP re- 
duction with the nine other groups used for classifier training. The reduced 
objects were recombined and stepwise feature selection was performed. The 
images were again separated into the ten groups and each group underwent 
LDA texture classification again using the nine other groups for classifier 
training. All test scores were then recombined and final FROC analysis was 
performed. 

D. False positive reduction 

The DWCE segmentation and region growing do not dif- 
ferentiate masses from normal tissues, therefore, a large 
number of breast structures were usually detected in each 
mammogram. Since the shape and texture of mass objects, in 
general, should be different from those of normal breast 
structures, a set of features was extracted from each detected 
object and used to differentiate between the detected struc- 
tures. The feature set included both morphological and tex- 
ture features. These features were then used in a sequential 
classification scheme to reduce the number of FP detections 
in the mammograms. The sequential application of different 
classifiers has been found to increase classification 
accuracy,17 and it also allows more computationally inten- 
sive classifiers to be applied to as few objects as possible. A 
flow chart depicting the general approach employed for FP 
reduction is shown in Fig. 6. In this study, morphological 
classification was initially used to eliminate objects that had 
shapes significantly different from breast masses. Texture 
features were then computed for all remaining objects and 
used with a linear classifier as a final arbiter between masses 
and normal structures. The following sections describe the 
major components of the FP reduction scheme. 

1. Morphological feature-based FP reduction 

The mammograms were partitioned into a number of dif- 
ferent groups so that the morphological classifiers could be 
trained and tested to differentiate masses from normal struc- 
tures. In this study, the 253 mammograms were randomly 
partitioned into ten independent groups. Each mammogram 
was allowed to appear in only one group, and all images 
from the same patient were grouped together. The goal of the 
partitioning was to have approximately the same number of 
images in each group under the given constraints. Classifica- 
tion of the objects within each individual group was per- 
formed with a classifier trained using the objects from the 
nine other image groups. This allowed an approximate 9:1 
training-to-test ratio for morphological classification. By ro- 
tating the test group through all ten image sets, each mam- 
mogram served as a test case once. 

Eleven morphological features were used in the initial dif- 
ferentiation of the detected structures. These features in- 
cluded the following object-based measures: number of pe- 
rimeter pixels, area, perimeter-to-area ratio, circularity, 
rectangularity, and contrast. In addition, five normalized ra- 
dial length (NRL) features introduced by Kilday et al. were 
also utilized.18 They included the NRL mean value, standard 
deviation, entropy, area ratio, and zero-crossing count. The 
definition for each morphological feature can be found in the 
literature.10 They are also included in Appendix A of this 
paper. 

The morphological features were used as input variables 
for two different classifiers. A simple threshold classifier was 
followed by a linear discriminant analysis (LDA) classifier in 
the morphological FP reduction step. The simple threshold 
classifier set a maximum and minimum value for each mor- 
phological feature based on the maximum and minimum fea- 
ture values found from the breast masses in the data set. The 
LDA classification was applied to all objects remaining after 
threshold classification. The LDA classifier is a linear clas- 
sifier based on Fisher's discriminant, which is optimal for the 
two-class, multivariate normal, equal covariance 
problem.19'20 The LDA classifier was trained for each train- 
ing set and applied to the appropriate test set. The LDA 
classifier produced a single discriminant score for each ob- 
ject in the test set. A threshold was defined as the maximum 
discriminant score of the masses. This threshold was applied 
to the test set to further differentiate breast masses for normal 
structures. The threshold was again based on all masses in 
the data set to ensure that no mass would be lost during this 
initial stage. Figure 4(f) shows the results of morphological 
FP reduction for the example depicted in the figure. 

2. Texture feature-based FP reduction 

Texture-based classification followed the morphological 
FP reduction. A large set of multiresolution texture features 
was extracted for each detected object in the mammogram. 
Stepwise feature selection was then used to choose the most 
appropriate set of features for linear classification. The se- 
lected features were subsequently used with a LDA classifier 
to produce a single discriminant score for each detected ob- 
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TABLE I. The number of detected masses and FPs, the single stage reduction, the mean object area (/iArea)> SDA 

standard deviation of the object areas (<rMeJ for me initial stages in the mass detection scheme. Note texture FP 
reduction followed the morphological FP reduction stage. 

Stage 
TPs 

fraction 
FPs/image 

(initial stages) Reduction ^Area (mm2) "Area (mm2) 

DWCE 
Region growing 
Morph. FP reduction 

97% 
97% 
97% 

49.1 
45.3 
35.5 

0% 
22% 

33.6 
52.4 
51.9 

66.8 
85.1 
52.1 

ject. The overall performance of the detection scheme was 
then evaluated with FROC analysis. The texture-based re- 
duction scheme has been documented in the literature; there- 
fore, this paper will only summarize the important compo- 
nents of the texture analysis and point out any differences 
from the previously described techniques.10'21'22 

Regions of interest (ROIs) containing each object remain- 
ing after morphological FP reduction were extracted from 
the 100 fim resolution mammograms. The ROIs had a fixed 
size of 256X256 pixels and the center of each ROI corre- 
sponded to the centroid location of a detected object. The 
only exception was when the object was located near the 
border of the breast and a complete 256X256 pixel ROI 
could not be defined. In this case the ROI was shifted until 
the appropriate edge coincided with the border of the original 
mammogram. 

Global and local multiresolution texture features, based 
on the spatial gray level dependence (SGLD) matrix,23'24 

were used in texture analysis.22 An element of the SGLD 
matrix, Pd,ß(iJ), is defined as the joint probability that gray 
levels i and j occur at a given interpixel separation d and 
direction ft In this study, 13 texture measures were defined 
for each SGLD matrix. These measures were correlation, en- 
ergy, entropy, inertia, inverse difference moment, sum aver- 
age, sum variance, sum entropy, difference average, differ- 
ence variance, difference entropy, information measure of 
correlation 1, and information measure of correlation 2. The 
definition for all texture measures can be found in the 
literature22 and are included in Appendix B of this paper. 

The wavelet transform with a four-coefficient Daubechies 
kernel was used to decompose individual ROIs into different 
scales. For global texture features, four different wavelet 
scales, 14 different interpixel distances and 2 different angles 
were used to produce 28 SGLD matrices. This resulted in 
364 global multiresolution texture feature for each ROI. To 
further describe the information specific to the mass and its 
surrounding normal tissue, a set of local texture features 
were calculated for each ROI.10'22'25 Five rectangular subre- 
gions were segmented from each ROI; an object subregion 
defined by the detected object in the center and four periph- 
eral regions at the corners. Eight SGLD (four interpixel dis- 
tances and two angles) and a total of 208 local features were 
calculated from the object subregion and the periphery. They 
included 104 features in the object region and an additional 
104 features defined as the difference between the feature 
values in the object and the periphery. 

In order to improve the generalization of the texture clas- 

sification, stepwise feature selection was used to select a sub- 
set of feature from the pool of 572 global and local features. 
Feature selection was performed using texture features de- 
rived from the ROIs obtained from all 253 images. A total of 
40 texture features were selected by stepwise feature selec- 
tion. Details on the application of stepwise feature selection 

91 9fi can be found in our previous publications.  ' 
At this point in texture classification, the mammograms 

were again divided into the same ten partitions as described 
in the morphological FP reduction step. Texture classifica- 
tion was performed on each test group with a trained LDA 
classifier employing the selected features. The training was 
based on the texture features derived from the ROIs in the 
nine other image groups. The test scores within each group 
were combined with the scores from the other groups to form 
a complete test set of discriminant scores. 

The FROC analysis based on the single set of test scores 
was used to evaluate the overall performance of the segmen- 
tation method.27'28 

III. RESULTS 

The number of TP and FP detections found following the 
DWCE, region-growing, and morphological FP reduction 
stages of the segmentation algorithm are summarized in 
Table I. The DWCE segmentation identified 97% of the 
breast masses. Table I also includes the reduction percentage, 
the mean object areas (/x.Area) and the standard deviations in 
the object areas (»Area) f°r these initial stages. Table II sum- 
marizes the mass type, mass size, mass subtlety, and the 

TABLE n. The mass type, mass size, mass subtlety, and mammographic 
tissue density for the mammograms where the mass was not identified by 
the initial segmentation. In the table, B dentines a benign lesion, M identi- 
fies a malignant lesion, the subtlety is on a scale of 1 (obvious) to 5 (subtle), 
and breast density uses the BIRADS density scale of 1 (fatty) to 4 (dense). 
Both the subtlety and density rankings were performed by an experienced 
breast radiologist. 

Mass no. Type Size (mm) Subtlety Breast density 

1 M 6 4 1 
2 B 10 2 1 
3 B 14 2 2 
4 B 10 2 3 
5 B 10 2 3 
6 B 14 2 3 
7 B 12 4 4 

Average 10.9 2.6 2.4 
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FIG. 7. Examples of masses missed during the initial DWCE segmentation stage: (a) a mammogram with a dense pectoral muscle, fatty breast tissue, and a 
subtle malignant mass (mass 1 in Table II); (b) a mammogram containing a low contrast benign mass (mass 3 in Table II); and (c) a mammogram with dense 
structures next to a lower contrast benign mass (mass 4 in Table n). 

overall mammographic tissue density for the seven masses 
missed during the initial DWCE segmentation stage. Figure 
7 shows examples of the cases where the mass was missed 
during the DWCE stage. Figure 8 shows example images 

with corresponding gradient and object images for cases that 
had problems during the region-growing stage. This figure 
contains an example where the mass stopped growing before 
it reach the correct edge, and an example where the mass was 

FIG. 8. A mammographic case con- 
taining a mass that stopped growing 
before it reached the correct edge (a)- 
(c) and a case containing a mass that 
was split into two pieces during grow- 
ing (d)-(f). This figure includes (a) 
and (d) the original mammograms 
with the mass locations identified, (b) 
and (e) the corresponding gradient im- 
ages, and (c) and (f) the final grown 
objects. 

Medical Physics, Vol. 26, No. 8, August 1999 



1650        Petrick et al.: Combined adaptive enhancement and region-growing segmentation of breast masses 1650 

' "   "   ' .   .   . .   .   . 

, 

, ■ 

: 

 TRAINING FROC 
 TEST FROC 

,   , -n-i- i   i   i ■   ■   i -i- r-r- 

1.0 

0.8 

p 0.6 
ü < 
u- 0.4 
Q. 

0.2 

0.0 
01     23456789   10 

NUMBER OF FPs/IMAGE 

FIG. 9. The training and test FROC curve obtained following LDA classifi- 
cation using 40 selected texture features. The training scores were obtained 
by averaging the nine training scores from each detected object. The FROC 
data points were obtained by varying the discriminant decision threshold 
from the maximum to the minimum value. 

split into two pieces during region growing. Finally, Fig. 9 
show the FROC training and test performance for the com- 
plete segmentation scheme. A summary of the overall per- 
formance is given in Tables HI and IV for a number of dif- 
ferent TP detection fractions. The test performance for the 
combined DWCE and region-growing segmentation tech- 
nique at a 90% TP detection level was 4.2 FPs per image and 
2.0 FPs per image at an 80% TP level. 

IV. DISCUSSION 

The purpose of the initial DWCE segmentation stage was 
to have a method sensitive enough to identify breast masses 
but which also limited the number of normal structures de- 
tected. We have found the DWCE segmentation to be effec- 
tive in this task. In this study, DWCE segmentation identified 
246 of the 253 (97%) masses in the images. Table n sum- 
marizes the properties of the masses missed in DWCE seg- 
mentation. Masses 1 and 2 were missed because of a dense 
pectoral muscle visible on the mammogram which over- 
whelmed all lower-density structures (i.e., both mammo- 
grams had BIRADS category 1 breast density). The dense 
pectoral muscle caused the lower level of the DWCE inten- 
sity range to be set so high that lower intensity structures 
were missed. Figure 7(a) shows the mammogram of the 
missed malignant mass (mass 1 from Table II). The pectoral 
muscle is much denser than the mass. This led to the miss. 
One possible method for eliminating this type of miss may 
be to identify the pectoral muscle in the mammogram and to 
apply DWCE segmentation to only the remaining breast re- 
gion. Mass 3 in Table II was missed because of the small 
contrast difference between the mass and the background 
tissue even though the mass was not particularly small or 
subtle. The mammogram containing this mass is depicted in 
Fig. 7(b). The remaining masses were missed in mammo- 
grams containing denser breast tissue. It was observed that 
DWCE segmentation had problems detecting masses that 
were located near much denser normal structures. The dense 

structures were detected but the masses were missed. Figure 
7(c) shows an example of this type of miss. It shows the 
mammogram containing mass 4 from Table II. Again the 
dense pectoral muscle may have also hindered detection of 
the mass in this case. Other than these problems, the DWCE 
segmentation performed reasonable well as a first stage in 
mass segmentation. It could identify the majority of the 
masses while eliminating many of the lower contrast back- 
ground structures. However, the DWCE segmentation usu- 
ally underestimated the actual borders of most structures. It 
also had a tendency to merge the mass with neighboring 
structures that may have had some tissue overlap with the 
breast mass. A total of 48 masses had significant merging 
between the mass and adjacent tissues after DWCE segmen- 
tation. This limited the effectiveness of the morphological FP 
reduction step and limited the localization of the mass during 
texture-based classification. 

The region-growing stage reduced the effects of object 
merging and significantly increased the size of the initial 
DWCE objects. This is clearly shown in Table I where the 
average size of a structure increases from 33.6 mm2 with 
DWCE alone to 52.4 mm2 following region growing. Like- 
wise, a comparison of objects from Figs. 4(b) and 4(e) shows 
the improvement in border definition following region grow- 
ing. A combination of gray-scale and gradient-based region 
growing was used because of the difficulty in stopping gray- 
scale region growing at the correct edge and the need for 
large seed objects in gradient-based region growing. The 
combination approach performed adequately in our detection 
task and led to an improvement in both morphological and 
texture-based FP reduction. However, some problems were 
observed. One problem was that small and low-contrast 
structures had a tendency to grow into the background and 
become large regions even though the actual structures were 
quite small. This did not occur with masses, but it did occur 
with other breast structures. Another problem was that struc- 
tures containing internal gradients did not always grow to the 
correct border, but ended up containing only a section of the 
true object. This occurred to some mass objects and led to 
either inaccurate structural information or a mass being split 
into multiple pieces. Figure 8 shows an example of both 
incomplete growing and a mass split into pieces during re- 
gion growing. While these problems reduced the effective- 
ness of the morphological FP reduction, we have found that 
the overall benefit of region growing outweights its draw- 
backs and leads to an improvement in detection accuracy 
with our segmentation scheme. 

The final step in the segmentation was FP reduction. Mor- 
phological feature classification was performed first in our 
reduction scheme. The morphological classification reduced 
the number of FPs per image from 45.3 to 35.5 as shown in 
Table I. Following morphological reduction, the average size 
of the objects was similar to the average size before reduc- 
tion, but the standard deviation in object size fell from 85.1 
mm2 before reduction to 52.1 mm2 after reduction. This in- 
dicates that morphological reduction eliminated objects that 
were either much larger or much smaller than the average 
object size, but had trouble differentiating between TPs and 
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TABLE m. Summary of the training FROC result depicted in Fig. 9. The 
table contains the number of FPs per image for different TP fractions along 
with the percentage of FPs reduced at each TP level relative to the initial 
value of 19.4 FPs per image. The first entry in the table is the reduction 
achieved without missing any additional breast masses. 

TP fraction FPs/image FP reduction 

98% 19.4 
95% 6.1 
90% 4.0 
80% 1.9 

69% 
79% 
90% 

FPs of similar sizes. Therefore, a classifier that can better 
differentiate between these similar shaped objects was still 
necessary. This was achieved, to a large extent, with texture- 
based feature classification. 

A LDA, classifier based on SGLD texture features ex- 
tracted from ROIs defined by each detected object has 
proven to be effective in differentiating between similar 
shaped objects. The training and test FROC performance 
curves following final texture classification are shown in Fig. 
9. In addition, the number of FPs per image for different TP 
fractions are given in Tables in and IV for the two curves. 
As discussed in the Methods section, the mammograms were 
divided into ten independent groups and a 9:1 training-to-test 
ratio was employed in the classification. Therefore, the test 
value for an object was its single testing score, and its train- 
ing value was the average of the scores obtained for the 
object during training with the nine different training group 
combinations. The first point to note in Tables IH and IV is 
that the initial TP detection fraction has increased from 97% 
in Table I to 98% (i.e., 247 total masses were detected). This 
is due to the change in the definition of a TP with the texture 
ROIs. The additional mass was detected because in one of 
the seven mammograms where no object contained the mass 
centroid, an object ROI overlapped with at least 50% of the 
mass. The texture classification was able to reduce the num- 
ber of FPs per image from an initial value of 35.5 to approxi- 
mately 19 without the loss of any TPs, achieving a 45% 
reduction. While the number of FPs is still large, it indicates 
that the more computationally intensive texture classification 
performs better than morphological reduction. Additional re- 
duction in FPs can be achieved with lower TP detection 
thresholds. For example, at a 90% TP fraction the FPs de- 
creased to 4.2 per image and at an 80% TP level the FPs 
decreased to 2.0 per image. Comparing with our previously 

reported two-stage DWCE edge detection segmentation 
technique10 (discussed in Sec. I), we obtained improved per- 
formance at all TP levels despite the fact that the data set was 
increased from 168 to 253 mammograms and two fewer FP 
reduction stages were used with the new segmentation tech- 
nique. 

The results presented in this paper do not reflect results 
from a completely independent test set because the feature 
selection and the selection of morphological classification 
thresholds were based on the entire image set. This was nec- 
essary to obtain the best possible mass statistics from our 
limited data set at the intermediate stages of the algorithm. A 
database is currently being collected so that completely in- 
dependent testing can be performed using the proposed 
method. 

V. CONCLUSION 

We have reported on an improved version of a breast 
mass detection scheme. The scheme employs DWCE seg- 
mentation and object-based region growing. Its overall per- 
formance has achieved a 90% TP detection level with 4.2 
FPs per image and an 80% TP detection level with 2.0 FPs 
per image with a diverse database of 253 mammograms. The 
addition of region growing improved the borders of the de- 
tected objects and reduced merging between adjacent or 
overlapping structures. This improved the morphological in- 
formation extracted from the detected breast masses and thus 
the differentiation between masses and normal tissues. The 
FP reduction was also simplified to a single stage of morpho- 
logical feature classification and a single stage of SGLD tex- 
ture feature classification. It is expected that a simplified FP 
reduction scheme has the potential to generalize better than a 
more complicated scheme when CAD is implemented in a 
clinical setting. This breast mass segmentation scheme pro- 
vided improved FROC performance compared to our previ- 
ously reported two-stage DWCE technique. Further investi- 
gations are under way to improve the region-growing 
segmentation by analyzing different growing methods that 
may improve the border definition of the detected structures, 
as well as to develop new object features that may further 
differentiate masses from normal structures. Preclinical test- 
ing of this algorithm on a large set of independent mammo- 
grams will also be conducted. 

TABLE IV. Summary of the test FROC result depicted in Fig. 9. The table 
contains the number of FPs per image for different TP fractions along with 
the percentage of FPs reduced at each TP level relative to the initial value of 
19.2 FPs per image. The first entry in the table is the reduction achieved 
without missing any additional breast masses. 

TP fraction FPs/image 

98% 19.2 
95% 6.7 
90% 4.2 
80% 2.0 

FP reduction 

65% 
78% 
90% 

ACKNOWLEDGMENTS 

This work is supported by the Whitaker Foundation (NP), 
USPHS Grant No. CA 48129, a Career Development Award 
DAMD 17-96-1-6012 (BS), and research grant DAMD 17- 
96-1-6254 from the U.S. Army Medical Research and Mate- 
riel Command. The content of this publication does not nec- 
essarily reflect the position of the government, and no 
official endorsement of any equipment or product should be 
inferred. 

Medical Physics, Vol. 26, No. 8, August 1999 



1652        Petrick ef a/.: Combined adaptive enhancement and region-growing segmentation of breast masses 1652 

APPENDIX A: MORPHOLOGICAL FEATURE 
DEFINITIONS 

A set of 11 features is used in morphological FP reduc- 
tion. Ten of these features are based solely on the binary 
object defined by the segmentation. The other feature utilizes 
the original gray scale values inside and surrounding the seg- 
mented object. An individual object segmented from image 
F(x,y) is defined as: 

^obj,.(*'V); 
1,    (x,y) is a pixel in object i, 

0,    otherwise. 
(Al) 

In addition, FBB.(x,y) defines the pixels contained in the 

smallest bounding box completely containing object i and 
FEqv.(*>)0 defines the pixels of the circle with the same area 
as Fobj. and centered at its centroid location. The radius of 

FEqVj(x,y) is given by 

rEqv" 4 area (Fobj.) 

17 
(A2) 

Five features are based on the normalized radial length 
(NRL), defined as the Euclidean distance from an object's 
centroid to each of its edge pixels and normalized relative to 
the maximum radial length for the object.18 This results in a 
NRL vector for each object i given as 

R,-={rlV:0«/«JVe-l}, (A3) 

where Ne is the number of edge pixels in the object and 
r, y=s 1. The histogram of the normalized radial length is also 
calculated and is given by 

PI-={prob,v:0«y«^-l}, (A4) 

where Nh is the number of bins used in the histogram. Using 
these basic definitions, the morphological features are de- 
fined as follows. Perimeter: 

Perim,= 2   Pi(x,y), 
Vx,Vy 

(A5) 

where 

Pi(x,y) = \ 

Area: 

1,    FobjXjc.y) is an edge pixel of object i, 

0,    otherwise. 

Area,= 2   Fobi(x,y) 

Perimeter-to-area ratio: 

Perim, 
PAR,= 

Circularity: 

Circ,= 

Area, 

^■VxyyFobiPF^. 

Area,- 

(A6) 

(A7) 

(A8) 

Rect,=; 
Area, 

^VxyyFßBj 

NRL mean: 

l  N,-l 

NRL standard deviation: 

/^NRL,) 

NRL entropy: 

Nh-1 

£NRL,= - X  prob,-,rlog2(problJ). 

(A9) 

(A10) 

(All) 

(A12) 

NRL area ratio: 
N,-l 

AreaR'=   ATT: 2   (r«j-/*rauJ:^,y>/*NRL.| 

NRL zero-crossing count: 
Ne-l 

zcc,= 2 Zij, 

(A13) 

(A14) 

where 

Contrast: 

' 1>    (''u-l>AtNRLI.)n(r,v+1</tNRL.), 

1>      (f,j-1 </*NRL,) n (riJ+! > ANRL,), 

k 0,    otherwise. 

Cont,= 
Sin 

6ou 
(A15) 

Rectangularity: 

where g^. is the average gray value inside object i and gout. 
is the average gray value of the one-pixel wide background 
surrounding the object. 

APPENDIX B: SGLD TEXTURE FEATURE 
DEFINITIONS 

Global and local multiresolution texture features are 
based on the spatial gray level dependence (SGLD) 
matrix.22-24 An element of the SGLD matrix, Pd,e(i,j)> is 
defined as the joint probability that gray levels i and j occur 
at a given interpixel separation d and direction 0. In this 
study, n is defined as the number of gray levels in an image. 
A total of 13 different texture measures were defined for 
each SGLD matrix. They were defined as follows.22 

Energy: 
n —1 n— 1 

£=2 SP^OJ)- (BI) 
I = 0 ; = 0 

Correlation: 
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n zUZj-bv-pJU-nyiPdAiJ) (B2) 
Difference variance: 

(Tx(Ty n-l 

where "2-,= 2    (l-»x-y)2
Px-y(l).                                                        (B16) 

'     1=0 

n-l n-1 

/*x=2   2 iPdM>J)> 
i=0 ;'=0 

(B3) Difference entropy: 

n — l 

n-l n-l 
Hx-y= ~  2    Px-y(l)\Og2(Px-y(l))-                                                     (B17) 

f 

/"■y=2   2  jPd.eV'J)' J     i=0 j=o 
(B4) 1=0 

(B5) 
Information measure of correlation 1: 

r 

vx= ^ztelzlii-iL^PaM'i)' 
H-Hx 

and 

(B6) 

TTuTP  —                                                                                                     (Ti 1 Q^ JJViCj          ,          ,.                                             (»107 
max{Hx,#,,} 

Information measure of correlation 2: dy^^I^oU-^WeiiJ). 
Entropy: 

n-l n-l 
IMC2=Vl-exp-2(ff2-"),                                     (B19) 

i=0 ;=0 
(B7) where 

Inertia: 

n-l n-l 

n-l 

#*= - 2 />,(»')log2(Px(0),                                  (B20) 
! = 0 

In=2 2 (i-J)2Pd,e(lJ)- 
i=0 ; = 0 

(B8) n-l 

ff,= -2p,0')log2(p,0")),                                 (B21) 
Inverse difference moment: ;'=0 

n — l n — l              1 

(B9) 
n-l n-l 

#i = -2 2 PdAi>J)l°S2(p*(i)Py(J))              (B22) 
i=0 ;=0 i=0 ;=o l+(i—J) 

Sum average: and 
2n-2 n-l n-l 

flx+y = 2J    kPx+yik), 
k=0             y 

(BIO) H2= -2  2 />*(«>y0')log2<Px(0p,0"))-           (B23) 
( = 0 y = 0 
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ABSTRACT 

In computer-aided diagnosis (CAD), a frequently-used approach is to first extract several potentially useful features 
from a data set. Effective features are then selected from this feature space, and a classifier is designed using the selected 
features. In this study, we investigated the effect of finite sample size on classifier accuracy when classifier design involves 
feature selection. The feature selection and classifier coefficient estimation stages of classifier design were implemented 
using stepwise feature selection and Fisher's linear discriminant analysis, respectively. The two classes used in our 
simulation study were assumed to have multidimensional Gaussian distributions, with a large number of features available 
for feature selection. We investigated the effect of different covariance matrices and means for the two classes on feature 
selection performance, and compared two strategies for sample space partitioning for classifier design and testing. Our results 
indicated that the resubstitution estimate was always optimistically biased, except in cases where too few features were 
selected by the stepwise procedure. When feature selection was performed using only the design samples, the hold-out 
estimate was always pessimistically biased. When feature selection was performed using the entire finite sample space, and 
the data was subsequently partitioned into design and test groups, the hold-out estimates could be pessimistically or 
optimistically biased, depending on the number of features available for selection, number of available samples, and their 
statistical distribution. All hold-out estimates exhibited a pessimistic bias when the parameters of the simulation were 
obtained from texture features extracted from mammograms in a previous study. 

Keywords: feature selection, linear discriminant analysis, effects of finite sample size, computer-aided diagnosis 

1.   INTRODUCTION 

A common problem in computer-aided diagnosis (CAD) is the lack of a large number of image samples to design a 
classifier and to test its performance. The effect of finite sample size on the classification accuracy is therefore an important 
research topic. In order to treat its specific components, previous studies have mostly ignored the feature selection 
component of this problem, and assumed that the features used in the classifier were fixed.1"4 However, in many CAD 
algorithms, feature selection is a necessary first step. This paper addresses the effect of finite sample size on classification 
accuracy when the classifier design involves feature selection. 

In classifier design, the resubstitution and hold-out estimates are commonly used to assess the accuracy of the 
classifier. To obtain the resubstitution estimate, the classifier is designed using a number of training samples, and the same 
samples are then applied to the classifier to yield the distribution of the output decision variable for the training group. The 
resubstitution performance of the classifier is then measured (e.g., by computing the area under the receiver operating 
characteristic curve, or by evaluating the probability of misclassification) using this distribution. To obtain the hold-out 
estimate, the classifier is designed in a similar way, except that an independent set of test samples are applied to the classifier 
to yield the distribution of the output decision variable for the test group. As the number of training samples increases, both 
of these estimates approach the true classification accuracy, which is the accuracy of a classifier designed with the full 
knowledge of the sample distributions. When the training sample size is finite, it is known that, on average, the resubstitution 
estimate of classifier accuracy is optimistic. In other words, it has a higher expected value than the performance obtained 
with an infinite design sample set, which is the true classification accuracy. Similarly, on average, the hold-out estimate is 
pessimistic. When classifier design is limited by the availability of design samples, it is important to obtain a conservative 
(or pessimistic) performance estimate, which provides a lower bound on the classification accuracy. 

In CAD literature, different methods have been used to estimate the classifier accuracy when the classifier design 
involves feature selection. In a few studies, only the resubstitution estimate was provided.5 In some studies, the researchers 
partitioned the samples into training and test groups at the beginning of the study, performed both feature selection and 

Part of the SPIE Conference on Image Processing • San Diego, California • February 1999 
SPIE Vol. 3661 • 0277-786X799/$10.00 

499 



classifier parameter estimation using the training set, and provided the hold-out performance estimate." Several other studies 
used a mixture of the two methods: The entire sample space was used as the training set at the feature selection step of 
classifier design, but once the features were chosen, the hold-out or leave-one-out methods were used to measure the 
accuracy of the classifier.7"12 To our knowledge, it has not been reported whether this latter method provides an optimistic 
or pessimistic estimate of the classifier performance. 

This paper describes a simulation study that investigates the effect of finite sample size on classifier accuracy when 
classifier design involves feature selection. We chose to focus our attention on stepwise feature selection in linear 
discriminant analysis (stepwise linear discriminant analysis) since this is a simple and common feature selection and 
classification method. The class distributions were assumed to be multivariate Gaussian. We studied the effect of different 
covariance matrices and means on feature selection performance. We compared the bias of the classifier when feature 
selection was performed on the entire sample space, and on the design samples alone. The effects of sample size, number of 
available features, and parameters of stepwise feature selection on classifier bias were examined. 

2. METHODS 

To evaluate the effect of sample size on feature selection and classifier bias, we studied the problem of stepwise 
linear discriminant analysis in two stages. The first stage is stepwise feature selection, and the second stage is the estimation 
of linear discriminant coefficients for the selected feature subset. 

2.1. Stepwise Feature Selection 
4 

Stepwise feature selection iteratively enters features into or removes features from the group of selected features 
based on a feature selection criterion.13 In our study, we used Wilks' lambda, which is defined as the ratio of within-group 
sum of squares to the total sum of squares of the discriminant scores, as the feature selection criterion. At the feature entry 
step of the stepwise algorithm, an F value is computed for each feature based on the ratio of the Wilks' lambda before and 
after the feature is entered into the pool of already selected features. The feature with the largest F value is entered into the 
selected feature pool if the F value is larger than a threshold F^,. At the feature removal step, the features are tested for 
removal one at a time from the selected feature pool, the F values are computed, and the feature with the smallest F value is 
removed from the selected feature pool if the F value is smaller than a threshold Fom. The algorithm terminates when no 
more features can satisfy the criteria for either entry or removal. The number of features selected therefore increases, in 
general, when Fm or Fom are reduced. 

2.2. Estimation of Linear Discriminant Coefficients 

As a by-product of the stepwise feature selection procedure used in our study, the coefficients of a linear classifier 
that classifies its design samples using the selected features are also computed. However, in this study, the design samples 
used in the stepwise feature selection step of classifier design may be different from those used in the estimation of classifier 
coefficients. Therefore, we implemented the stepwise feature selection and the classifier coefficient estimation components 
of our classification scheme separately. 

Let Zi and In denote the k-by-k covariance matrices of samples belonging to class  1 and class 2, and let 
ßj =( Hi(I),ßj(2) ß](k)) denote their mean vectors. For an input vector X, the linear discriminant classifier output is 

defined as 

Mx) = ^(ß2-ß])
TI-1X+^(fxJs-1ß]-fxJE-1fi2), (1) 

where E=(ZI+ET)/2. The linear discriminant classifier is the optimal classifier when the two classes have a multivariate 
Gaussian distribution with equal covariance matrices. 

For the class separation measures considered in this paper (refer to Section 2.3), the constant term 

(pjz~1pij -ß\l.~l ß2 )?2- in Eq. (1) is irrelevant. Therefore, the classifier design can be viewed as the estimation of k 

parameters of the vector ( ß2 - ßj) E    using the design samples. 
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When a finite number of design samples are available, the means and covariances are estimated as the sample means 
and the sample covariances from the design samples. The substitution of true means and covariances in Eq. (1) by their 
estimates causes a bias in the accuracy of the classifier. In particular, if the designed classifier is used for the classification of 
design samples, then the performance is optimistically biased, and if the classifier is used for classifying test samples that are 
independent from the design samples, then the performance is pessimistically biased. 

23. Measures of Class Separation 

2.3.1. Infinite sample size 

When an infinite sample size is available, the class means and covariance matrices can be estimated without bias 
(i.e., these quantities can be assumed to be known). In this case, we used the Mahalanobis distance A(<»), or the area AJ«>) 
under the receiver operating characteristic (ROC) curve as measures of classifier accuracy. The infinity sign in parentheses 
reflects the fact that the distance is computed using the true means and covariance matrices, or, equivalently, using an infinite 
number of samples. 

Assume that the two classes with a multivariate Gaussian distribution with equal covariance matrices have been 
classified using Eq. (1). Since Eq. (1) is a linear function of the feature vector X, the classifier outputs for class 1 and class 2 
will be Gaussian. Let m, and m2 denote means of the classifier output for the normals and the abnormals, respectively, and let 

2 2 
sj and 5? denote the variances for the two classes. With A(oo) defined as 

A(oo) = (n2-ßl)
Tz~](ß2-ßj), 

it can easily be shown that 
2        2 m2 ~ml ~ sl ~ s2 = A(°°)- 

(2) 

(3) 
The quantity A(oo) is referred to as the Mahalanobis distance between the two classes.  It is the Euclidean distance 

between the two classes, normalized to the common covariance matrix. 

In particular, if X is an k-by-k diagonal matrix with Et j=a2( i), then 

■*-J= 2S(i). 
i=l 

where 

S(i) = [ß2(i)-ß1(i)]
2/a2(i) 

is the squared signal-to-noise ratio of the difference of the means between the two classes for the i"1 feature. 

(4) 

(5) 

Az(°°) = 

Using Eq. (3), and the normality of the classifier outputs, it can be shown that14 

■J2n 
J 'dt (6) 

23.2. Finite sample size 

When a finite sample size is available, the means and covariances of the two class distributions were estimated as 
the sample means and the sample covariances using the training samples, and the classifier outputs for the training and test 
samples were computed using Eq. (1). The accuracy of the classifier was measured by receiver operating characteristic 
(ROC) methodology.15-16 The discriminant scores for samples belonging to class 1 and class 2 were used as decision 
variables in the LABROC1 program, which provided the ROC curve based on maximum likelihood estimation. 

2.4. Simulation conditions 

For our simulations, we assumed that the two classes have a multivariate Gaussian distribution with equal 
covariance matrices, and different means. The number of available features was M=100. We generated a sample size of Ns 

samples from each class using a random number generator. The sample space was randomly partitioned into N, training 
samples and Ns-N, test samples per class. For a given sample space, we used several different values for N, in order to study 
the effect of the design sample size on classification accuracy.  In order to reduce the variance of the classification accuracy 
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estimate, a given sample space was independently partitioned 20 times into N, training samples and Ns-N, test samples per 
class, and the classification accuracy using these 20 partitions was averaged. The procedure described above was referred to 
as an experiment. For each simulation condition described below, 50 statistically independent experiments were performed, 
and the results were averaged. 

Two methods for feature selection were considered. In the first method, the entire sample space was used for feature 
selection. In other words, the entire sample space was treated as a training set at the feature selection step of classifier design. 
Before the coefficient estimation step of classifier design, the sample space was partitioned into training and test groups. The 
training group was used for classifier coefficient estimation, and the resubstitution and hold-out performances were estimated 
by applying the training and test groups to the designed classifier, respectively. In the second method, sample set partitioning 
was performed before feature selection. In other words, both feature selection and coefficient estimation were performed 
only on the training set. 

Case 1: Comparison of correlated and diagonal covariance matrices 

Case La 
In this simulation condition, the 100X100 covariance matrix Z was chosen to have a block-diagonal structure 

A    0    0    ■••    0 

0   A    0    -■    0 

0    0    A   "-.    : 

;     ;    '-.   '-.   0 

0    0    -    0    A 

\ the 10X10 matrix A was 

' 1     0.8   0.8    ••- 0.8 

0.8     1    0.6    ... 0.6 

0.8   0.6     1     "-. 

0.6 

0.8   0.6    -    0.6 1 

A = 

and A[i(i)=Q.l732 for all i. Using (2), the Mahalanobis distance is computed as 4f »)=3.0, and A/a>)=0.89. 

Case Lb 
The features in Case La can be transformed into a set of uncorrelated features using a linear transformation, which is 

called the orthogonalization transformation. The linear orthogonalization transformation is defined by the eigenvector matrix 
of E, so that the covariance matrix after orthogonalization is diagonal. After the transformation, the new covariance matrix 
turns out to be the identity matrix, and the new mean vector is 

\0.5477   if i is a multiple of 10 

[0 otherwise 

Since a linear transformation will not affect the separability of the two classes, the Mahalanobis distance is the same 
as in Case La, i.e., 4f»)=3.0. 

Case 2: Simulation of a possible condition in CAD 

In order to simulate covariance matrices and mean vectors that one may encounter in CAD, we used texture features 
extracted from patient mammograms in a previous study, which aimed at classifying regions of interest (ROIs) on 
mammograms as malignant or benign.7 Ten different spatial gray level dependence (SGLD) texture measures were extracted 
from each ROI at five different distances and two directions. The number of available features was therefore M=100. The 
transformations that were applied to the ROI before feature extraction, and the formal definition of SGLD features can be 
found in the literature.7,17 The means and covariances for each class were estimated from a database of 249 mammograms. 

Case 2.a 
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In this simulation condition, the two classes were assumed to have a multivariate Gaussian distribution with 
Z=(Zi+Z2)/2, where E, and I2 were estimated from the feature samples for the malignant and benign classes. Since the 
features have different scales, their variances can vary by as much as a factor of 106. Therefore, it is difficult to provide an 
idea about how the covariance matrix is distributed without listing all the entries of the 100X100 matrix I. The correlation 
matrix, which is normalized so that all diagonal entries are unity, is better suited for this purpose. The absolute value of the 
correlation matrix is shown as an image in Fig. 1. In this image, small elements of the correlation matrix are displayed as 
darker pixels, and the diagonal elements, which are unity, are displayed as brighter pixels. From Fig. 2, it is observed that 
some of the features are highly correlated or anticorrelated. The Mahalanobis distance was computed as A(<»)=2.4, which 
implied A/»)=0.86. 

Case 2.b 
To determine the performance of a feature space with equivalent discrimination potential, but independent features, 

we performed an orthogonalization transformation on the SGLD feature space, as explained previously (Case Lb). 

3. RESULTS 
Case 1: 
Feature selection from the entire sample space 

Figs. 2.a and 2.b plot the area Az under the ROC curve for the resubstitution and hold-out performance estimates 
versus the inverse of the number of training samples per class, 1/N„ for Case l.a, and Case Lb, respectively (number of 
samples per class Nj=100). The F^ value was varied between 0.5 and 1.5, and Fout was defined as Fout=max[(Fin-l),0]. Fig. 
3 is equivalent to Fig. 2.a, except the number of samples per class was increased from #=100 to /v>500 in this figure. 

Case 2: 
Feature selection from the entire sample space 

The area Az under the ROC curve for the resubstitution and hold-out performance estimates are plotted versus 1/N, in 
Figs. 4.a and 4.b for Case 2.a, and Case 2.b, respectively (7^=100). The F^ value was varied between 0.5 and 3.0, and Fom 

was defined as Fom=max[(Fm-l),0]. Fig. 5 is equivalent to Fig. 4.a, except the number of samples per class was increased 
from #,=100 to /V>500 in this figure. 

Feature selection from training samples alone 
Case 2.a was used as an example. The area Az under the ROC curves versus 1/N, are plotted for /V>100 and /v>500 

in Figs. 6 and 7, respectively. 

4. DISCUSSION 

Fig. 2.b demonstrates the potential disadvantage of performing feature selection using the entire sample space. The 
best possible test performance with infinite sample size for Case 1 is A/»)=0.89. However, in Fig. 2.b, we observe that some 
of the "hold-out" estimates were as high as 0.92. These estimates were higher than AJoo) because the hold-out samples were 
excluded from classifier design only in the parameter estimation stage of the design, and were used as training samples in 

j feature selection.   When feature selection is performed using a small sample size, some features that are useless for the 
i general population may appear to be useful for the classification of the small number of samples at hand.   This was 
| previously demonstrated in the literature by comparing the probability of misclassification based on either a finite sample set 
5 or the entire population subject to the constraint that a given number of features were used for classification.18 In our study, 

given a small data set, the variance in Wilks' lambda estimates causes some feature combinations to appear more powerful 
than they actually are.   If the data set is partitioned into training and test groups after feature selection, these feature 
combinations may provide optimistic hold-out estimates. 

The observation made in the previous paragraph about feature selection using the entire sample space is not a 
general rule, however. Figs. 2.a and 4.a show that one does not always run the risk of obtaining an optimistic bias in the 
hold-out estimate when the feature selection is performed using the entire sample space. For Case 1, the best possible test 
performance with an infinite sample size is Aj(»)=0.89, but the best hold-out estimate in Fig. 2.a is A,=0.82. Similarly, for 
Case 2, the best possible test performance with infinite sample size is A/»)=0.86, but the best hold-out estimate in Fig. 4.a is 
Az=0.84. The features in both Case La and Case 2.a were correlated. Case Lb and Case 2.b were obtained from Case La and 
Case 2.a by applying a linear orthogonalization transformation to the features so that they become uncorrelated. Figs. 2.b and 
4.b show that after this transformation is applied, the hold-out estimates can be optimistically biased for small sample size 
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(#,=100) This shows that performing a linear combination of features before stepwise feature selection can have a dramatic 
influence on its performance. This result is somewhat surprising, because the stepwise procedure is known to select a set of 
features whose linear combination can effectively separate the classes. However, the orthogonahzation transformation in this 
study is assumed to be known a priori (i.e., it is not deduced from the available finite sample size), and is applied to the entire 
feature space of M features, whereas the stepwise procedure only produces combinations of a subset of these features. 

Figs. 6 and 7 demonstrate that when feature selection is performed using the training set alone, the hold-out 
performance estimate is pessimistically biased. This bias decreases as the number of training samples, N„ is increased. 

When F^ and Fou, values were low, the resubstitution performance estimates were optimistically biased for all the 
cases studied. Low F„ and Foul values imply that many features are selected using the stepwise procedure. From previous 
studies it is known that a larger number of features in classification leads to larger resubstitution bias.3 On the other hand, 
when F and Fm! values were very high, the number of selected features could be so low that the resubstitution estimate 
would be pessimistically biased, as can be observed from Fig. 3 (F^l.5) and Fig. 4.a (^=3.0). In all of our simulations, for 
a given number of training samples Nt, the resubstitution estimate increased monotonically as the number of selected features 
were increased by decreasing F^, and Fom. 

In contrast to the resubstitution estimate, the hold-out estimate for a given number of training samples did not 
change monotonically as F* and Fow were decreased. This can be observed from Fig. 2.a, where the hold-out estimate for 
F =1 5 is larger than all other hold-out estimates with different F* values for #=25 (7,W,=0.04). However, for #=90 
(7k=0 011), the hold-out estimate for the same F„ value is no longer the largest. In Fig. 2.a, the feature selection was 
performed using the entire sample space. A similar phenomenon can be observed in Fig. 7, where the feature selection is 
performed using the training samples alone. This means that for a given number of design samples, there is an optimum 
value for Fm and Fout (or the number of selected features) that provides the highest hold-out estimate. This is the well-known 
peaking phenomenon described in the literature,19 which can be explained as follows. For a given number of training 
samples, increasing the number of features in the classification has two opposing effects on the hold-out performance^ On 
the one hand the new features may provide some new information about the two classes, which tends to increase the hold-out 
performance. On the other hand, the same features increase the complexity of the classifier, which tends to decrease the 
hold-out performance. Depending on the balance between how much new information the new features provide and how 
much the complexity increases, the hold-out performance may increase or decrease when the number of features is increased. 

In this study, the number of available features was fixed at M=100. The number of samples per class was #,=100 in 
most of the simulations. However, in three of our simulation conditions, we used #,=500, which meant that the total number 
of samples was ten times that of available features. The results of these simulations are shewn in Fig. 3 for Case 1 and Figs. 
5 and 7 for Case 2. Our first observation concerning these figures is that no hold-out estimates in any of these figures are 
higher than their respective A/») values. This suggests that optimistic hold-out estimates may be avoided by increasing the 
number of available samples, or, possibly, by decreasing the number of features used for feature selection. A second 
observation is that, compared to other figures in this study, the relationship between the Az values and 1/N, is closer to a linear 
relation This suggests that it may be possible to obtain AJ,«,) by fitting a line to the Az vs. 1/N, curves using linear 
regression, and finding the y-axis intercept. This is similar to the modified Fukunaga and Hayes technique that we discussed 
previously in the studies of finite sample size effect on classifier bias. 

This study examined only the bias of the mean performance estimates, which were obtained by averaging the 
estimates from fifty experiments as described in Section 2.4. Another important issue in classifier design is the variance of 
the individual estimates. The variance provides an estimate of the generalizability of the classifier performance to other 
design and test samples. We previously studied the variance of performance estimates when the classifier design included 
the estimation of classifier coefficients, but excluded feature selection.4-20 The extension of our previous studies to include 
feature selection is an important further research topic. 

5. CONCLUSION 

In this study, we investigated the finite-sample performance of a linear classifier that included stepwise feature 
selection as a design step. We compared the resubstitution and hold-out estimates to the true classification accuracy, which is 
the accuracy of a classifier designed with the full knowledge of the sample distributions. We compared the effect of 
partitioning the data set into training and test groups before performing feature selection, and after performing feature 

504 



selection. When data partitioning was performed before feature selection, the hold-out estimate was always pessimistically 
biased. When partitioning was performed after feature selection, i.e., the entire sample space was used for feature selection, 
the hold-out estimates could be pessimistically or optimistically biased, depending on the number of features available for 
selection, number of available samples, and their statistical distribution. All hold-out estimates exhibited a pessimistic bias 
when the parameters of the simulation were obtained from correlated texture features extracted from mammograms in our 
previous study. The understanding of the performance of the classifier designed with different schemes will allow us to 
utilize a limited sample set efficiently and to avoid an overly optimistic assessment of the classifier 
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Fig. 1     The absolute value of the correlation matrix for the 100-dimensional texture feature space extracted from 249 

mammograms. The covariance matrix corresponding to these features was used in simulation Case 2.a. 
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Fig. 2.a The area Az under the ROC curve versus the inverse of the number of design samples N, per class for Case 
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using an input feature space of M=100 available features. A/<»j=0.89. 
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Hybrid unsupervised-supervised approach for computerized 
classification of malignant and benign masses on mammograms 
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ABSTRACT 

A hybrid classifier which combines an unsupervised adaptive resonance network (ART2) and a supervised linear 
discriminant classifier (LDA) was developed for analysis of mammographic masses. Initially the ART2 network separates the 
masses into different classes based on the similarity of the input feature vectors. The resulting classes are subsequently 
divided into two groups: (i) classes containing only malignant masses and (ii) classes containing both malignant and benign 
or only benign masses. All masses belonging to the second group are used to formulate a single LDA model to classify them 
as malignant and benign. In this approach, the ART2 network identifies the highly suspicious malignant cases and removes 
them from the training set, thereby facilitating the formulation of the LDA model. In order to examine the utility of this 
approach, a data set of 348 regions of interest (ROIs) containing biopsy-proven masses (169 benign and 179 malignant) were 
used. Ten different partitions of training and test groups were randomly generated using 73% of ROIs for training and 27% 
for testing. Classifier design including feature selection and weight optimization was performed with the training group. The 
test group was kept independent of the training group. The performance of the hybrid classifier was compared to that of'an 
LDA classifier alone. Receiver Operating Characteristics (ROC) analysis was used to evaluate the accuracy of the classifier. 
The average area under the ROC curve (Az) for the hybrid classifier was 0.81 as compared to 0.78 for LDA. The Az values 
for the partial areas above a true positive fraction of 0.9 were 0.34 and 0.27 for the hybrid and the LDA classifier, 
respectively. These results indicate that the hybrid classifier is a promising approach for improving the accuracy of 
classification in CAD applications. 

1. INTRODUCTION 

Mammography is the most effective method for detection of early breast cancer1. However, the specificity for 
classification of malignant and benign lesions from mammographic images is relatively low. Clinical studies have shown 
that the positive predictive value (i.e., ratio of the number of breast cancers found to the total number of biopsies) is only 
15% to 30% 2"3. It is important to increase the positive predictive value without reducing the sensitivity of breast cancer 
detection. Computer-aided diagnosis (CAD) has the potential to increase the diagnostic accuracy by reducing the false- 
negative rate while increasing the positive predictive values of mammographic abnormalities. 

Classifier design is an important step in the development of a CAD system. A classifier has to be able to merge the 
available input feature information and make a correct evaluation. Commonly used classifiers for CAD include linear 
discriminants (LDA)4 and backpropagation neural networks (BPN)5 which have been shown to perform well in lesion 
classification problems6"9. These classifiers are generally designed by supervised training. However, these types of 
classifiers have limitations dealing with the nonlinearities in the data (in case of LDA) and in generalizability when a limited 
number of training samples are available (especially BPN). Another classification approach is based on unsupervised 
classifiers, which cluster the data into different classes based on the similarities in the properties of the input feature vectors. 
Therefore, unsupervised classifiers can be used to analyze the similarities within the data. However, it is difficult to use them 
as a discriminatory classifier1 ' . 

We propose here a hybrid unsupervised/supervised structure to improve classification performance. The design of 
this structure was inspired by neural information processing principles such as self-organization, decentralization and 
generalization. It combines the Adaptive Resonance Theory network (ART2)14'15 and the LDA classifier as a cascade system 
(ART2LDA). The self-organizing unsupervised ART2 network automatically decomposes the input samples into classes 
with different properties. The ART2 network performs better compared to conventional clustering techniques in terms of 
learning speed and discriminatory resolution for the detection of rare events16'17.   The supervised LDA then classifies the 
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samples belonging to a subset of classes that have greater similarities.  By improving the homogeneity of the samples, the 
classifier designed for the subset of classes may be more robust. 

The ART2LDA design implements both structural and data decomposition. Decomposition is a powerful approach 
that can reduce the complexity of a problem. Both structural decomposition and data decomposition can improve 
classification accuracy as well as model accuracy". However, decomposition can also reduce the prediction accuracy due 
to overfitting the training data. We will demonstrate in this paper that the proposed hybrid structure can deal with the 
overfitting problem and improve the prediction capabilities of the system. 

2. ART2 UNSUPERVISED NEURAL NETWORK 

Trw3ART2 iS a Self or8anizing system that can simulate human pattern recognition. ART2 was first described by 
Grossberg and a series of further improvements were carried out by Carpenter, Grossberg and co-workers14'15. The ART2 
network clusters the data into different classes based on the properties of the input feature vectors. The members within a 
class have similar properties. The process of ART2 network learning is a balance between the plasticity and stability 
dilemma. Plasticity is the ability of the system to discover and remember important new feature patterns. Stability is the 
ability of the system to remain unchanged when already known feature patterns with noise are input to the system. The 
balance between plasticity and stability for the ART2 training algorithm allows fast learning, i.e., rare events can be 
memorized with a small number of training iterations without forgetting previous events. The more conventional training 
algorithms such as backpropagation5 perform slow learning, i.e., they tend to average over occurrences of similar events and 
require a lot of training iterations. 

Features 

1=1 

New 
Class 

pj=Yjxiwij   ' 

Selection of 
Winner 

Figure 1. Structure of the ART2 network. 

The structure of the ART2 system is shown in Figure 1. It consists of two parts: the ART2 network and the learning 
stage. Suppose that there are n input features xt 0=1, ... n) and k classes in the ART2 network. When a new vector is 
presented to the input of the ART2 network, an activation value pj for classy is calculated as: 

J-,-2 x,wv 7=1,...,*, (1) 

where w(j is the connection weight between input i and class j. The activation value is a measure of the membership of the 

particular input feature vector to class/ The higher the valuePj is, the better the input vector matches class;. The maximum 
value pr is selected from all pj (y = 1,..., k) to find the best class match. 
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Furthermore, in order to balance the contribution to the activation value from all feature components, the input 
feature values applied to the ART2 system are scaled between zero and one17. This normalization will allow detection of 
similar feature patterns even when the magnitudes of the input feature components are very different. 

The learning stage of the ART2 system can influence the weights of the selected class or the complete ART2 
network structure by adding a new class. An additional parameter, the vigilance, is used to determine the type of learning . 
The vigilance parameter pvig is a threshold value that is compared to the maximum activation value pr. If pr is larger than pvig 

then the input vector is considered to belong to class r. The adaptation of the weights connected with class r is performed as 
follows: 

Wl, ■■wf+riix, -<W) for i = l,... ,n, (2) 

where r] is a learning rate. The adaptation of the class r weights (Eq. 2), aims at maximization of the pr value for the 
particular input vector. In an iterative manner the weights are adjusted so that the produced activation values for similar input 
vectors will be maximum only for the class to which they belong and these maximum activation values will be higher than 

Pvig- 
If the maximum activation value pri% smaller than pvig, it is an indication that a novelty has appeared and a new class 

will be added to the ART2 structure. The new weights connecting the input with the new class (&+/) are initialized with the 
scaled input feature values of this novelty. In this way the activation value pk+i will be maximum {pr = pk+i) and will be 
higher than pvigi when it is computed for this novelty in further training iterations. The value of the vigilance parameter pvig 

determines the resolution of ART2. It can be chosen in the range between 0 and 1. If pvig is relatively small, only very 
different input feature vectors will be distinguished and separated in different classes. If pvig is relatively large the input 
feature vectors that are more similar will be separated into different classes. The choice of pvig is depends on the particular 
application. 

3. ART2LDA CLASSIFIER 

Despite the good performance of ART2 for efficient clustering and detection of novelties, the fast learning approach 
can cause problems associated with the generalization capability of the system and the correct classification of unknown 
cases. Supervised classifiers such as linear discriminants or backpropagation neural network classifiers can have better 
generalization capability than ART2, because they are trained by averaging over similar event occurrences. However, these 
classifiers do not have the ability to correctly classify rare events. 
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Figure 2. Structure of the ART2LDA classifier. 
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In order to improve the accuracy and generalization of a classifier, we propose to design a hybrid classifier that 
combines the unsupervised ART2 network and a supervised LDA classifier. This hybrid classifier (ART2LDA) utilizes the 
good resolution capability of ART2 and the good generalization capability of LDA. The ART2 network first analyzes the 
similarity of the sample population and identifies a subpopulation that may be separated from the main population. This will 
improve the performance of the second-stage LDA if the subpopulation causes the sample population to deviate from a 
multivanate normal distribution for which LDA is an optimal classifier. Therefore, the ART2 serves as a screening tool to 
improve the normality of the sample distribution by classifying outlying samples into separate classes. 

The structure of the hybrid ART2LDA classifier is shown in Fig. 2. The classes identified by ART2 are labeled to 
be one of the two types: malignant class or mixed class. A particular class is defined as malignant if it contains only 
malignant members. It is defined as mixed if it contains both malignant and benign members. The type of a given class is 
determined based on ART2 classification of the training data set. The ART2 classifies an input sample into either a 
malignant or a mixed class. Depending on the class type it is determined whether the LDA classifier will be used. If an input 
sample is classified into a mixed class, the final classification will be obtained based on the LDA classifier, which has been 
trained by the mixed classes in the training set. However, if an input sample is classified by ART2 into a' malignant class 
then the mass will be considered malignant, without using the LDA classifier. Therefore, in the ART2LDA structure, the 
ART2 is used both as a classifier and a supervisor. 

4. MATERIALS AND METHODS 

4.1. Data set 

The mammograms used in this study were randomly selected from the files of patients who had undergone biopsy at 
the University of Michigan. The criterion for inclusion of a mammogram in the data set was that the mammogram contained 
a biopsy-proven mass. Approximately equal number of malignant and benign masses were included. The data set contained 
348 mammograms with a mixture of benign (n=169) and malignant (n=179) masses. The visibility of the masses was rated 
by a radiologist experienced in breast imaging on a scale of 1 to 10, where the rating of 1 corresponds to the most visible 

tu 

35 

i      i      r 1      1      1      1      1      1      1 

■■■ Benign 
irr--~-i Malignant 

30 
TT, - 

25 ri 

20 1   - J§ _ 

15 IS S     K M~ 

10 
^         s 1     111 ll 

5 

0 III 1 ■I 1 1 
~ 

(0 
0) 
(0 
W 
<0 

n 
E 
3 z 

123456789     10 

Visibility 
Figure 3. The distribution of the visibility ranking of the 
masses in the dataset. The ranking was performed by an 
experienced radiologist. (1: very obvious, 10: very subtle). 

7     8     9    10 

Malignancy Rating 
Figure 4. The distribution of the malignancy ranking of the 
masses in the dataset. The ranking was performed by an 
experienced radiologist. (1: very likely benign, 10: very 
likely malignant). 

467 



category. The distributions of the visibility rating for both the malignant and benign masses are shown in Fig. 3. The 
visibility ranged from subtle to obvious for both types of masses. It can be observed that the benign masses tend to be more 
obvious than the malignant ones. Additionally the likelihood of malignancy for each mass was estimated based on its 
mammographic appearance. The radiologist rated the likelihood of malignancy on a scale of 1 to 10, where 1 indicated a 
mass with the most benign appearance. The distribution of the malignancy rating of the masses is shown in Fig. 4. 

Three hundred and five of the mammograms were digitized with a LUMISYS DIS-1000 laser scanner at a pixel 
resolution of 100 fjm X 100 jum and 4096 gray levels. The digitizer was calibrated so that gray level values were linearly 
and inversely proportional to the optical density (OD) within the range of 0.1 to 2.8 OD units, with a slope of -0,001 
OD/pixei value. Outside this range, the slope of the calibration curve decreased gradually. The OD range of the digitizer was 
0 to 3.5. The remaining 43 mammograms were digitized with a LUMISCAN 85 laser scanner at a pixel resolution of 50 jjtm 

X 50 fim and 4096 gray levels. The digitizer was calibrated so that gray level values were linearly and inversely proportional 

to the OD within the range of 0 to 4 OD units, with a slope of-0.001 OD/pixel value. In order to process the mammograms 
digitized with these two different digitizers, the images digitized with LUMISCAN 85 digitizer were convolved with a 2X2 
box filter and subsampled by a factor of two, resulting in 100 /an images. 

In order to validate the prediction abilities of the classifier, the data set was partitioned randomly into training and 
test subsets. Approximately 73% of the samples have been used for training and 27% for testing. The data set was 
repartitioned randomly ten times and the training and test results were averaged to reduce their variability. 

4.2. Feature extraction 

The texture features used in this study were calculated from spatial grey-level dependence (SGLD) matrices '' and 
run-length statistics (RLS) matrices19. The SGLD and RLS matrices were computed from the images obtained by the rubber 
band straightening transform (RBST)8. The RBST maps a band of pixels surrounding the mass onto the Cartesian plane (a 
rectangular region). In the transformed image, the mass border appears approximately as a horizontal edge, and spiculations 
appear approximately as vertical lines. A complete description of the RBST can be found in the literature . 

The (i j)th element of the SGLD matrix is the joint probability that gray levels i and j occur in a direction 6 at a 
distance of d pixels apart in an image. Based on our previous studies6, a bit depth of eight was used in the SGLD matrix 
construction, i.e., the four least significant bits of the 12 bit pixel values were discarded. Thirteen texture measures including 
correlation, energy, difference entropy, inverse difference moment, entropy, sum average, sum entropy, inertia, sum variance, 
difference average, difference variance and two types of information measure of correlation were used. These measures were 
extracted from each SGLD matrix at ten different pixel pair distances (d=l, 2, 3, 4, 6, 8, 10, 12, 16 and 20) and in four 
directions (0°, 45°, 90°, and 135°). Therefore, a total of 520 SGLD features were calculated for each image. The 
definitions of the texture measures are given in the literature6"818. These features contain information about image 
characteristics such as homogeneity, contrast, and the complexity of the image. 

RLS texture features were extracted from the vertical and horizontal gradient magnitude images, which were 
obtained by filtering the RBST image with horizontally or vertically oriented Sobel filters and computing the absolute 
gradient value of the filtered image. A gray level run is a set of consecutive, collinear pixels in a given direction which have 
the same gray level value. The run length is the number of pixels in a run19. The RLS matrix describes the run length 
statistics for each gray level in the image. The (i,j)th element of the RLS matrix is the number of times that the gray level i 
in the image possesses a run length of j in a given direction. In our previous study, it was found experimentally that a bit 
depth of 5 in the RLS matrix computation could provide good texture characteristics8. 

Five texture measures, namely, short run emphasis, long run emphasis, gray level nonuniformity, run length 
nonuniformity, and run percentage were extracted from the vertical and horizontal gradient images in two directions, 6 = 

0°, and 6 =90°. Therefore, a total of 20 RLS features were calculated for each ROI. 
A total of 540 features (520 SGLD and 20 RLS) were therefore extracted from each ROI. 
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4.3. Feature selection 

In order to reduce the number of the features and to obtain the best feature set to design a good classifier, feature 
selection with stepwise linear discriminant analysis20 was applied. At each step of the stepwise selection procedure one 
feature is entered or removed from the feature pool by analyzing its effect on the selection criterion. In this study, the Wilks' 
lambda was used as a selection criterion. 

4.4. Performance analysis 

To evaluate the classifier performance, the training and test discriminant scores were analyzed using receiver 
operating characteristic (ROC) methodology. The discriminant scores of the malignant and benign masses were used as 
decision variables in the LABROC1 program21, which fit a binormal ROC curve based on maximum likelihood estimation. 
The classification accuracy was evaluated as the area under the ROC curve, Az. The discriminant scores of all case samples 
classified in the two stages of ART2LDA are combined. All masses classified into the malignant group by the ART2 stage 
were assigned a constant positive discriminant score higher than or equal to the most malignant discriminant score obtained 
from the LDA classifier. 

The performance of ART2LDA was also assessed by estimation of the partial area under the ROC curve (Az
(09)) at a 

true positive fraction (TPF) higher than 0.9. The partial Az
(09) indicates the performance of the classifier in the high 

sensitivity (low false negative) region which is most important for cancer detection in clinical practice. 

f 

5. RESULTS 

In this study, the test subset was kept truly independent from the training subset; only the training subset was used 
for feature selection and classifier training, and only the test subset was used for classifier validation. In order to validate the 
prediction abilities of the classifier, ten different partitions of the training and test sets were used and the average 
classification results were estimated. 

Table 1. Number of selected features for the 10 data groups. 

Data Group No. 1 2 3 4 5 6 7 8 9 10 Mean 
Number of selected 

features 
12 15 13 18 14 14 13 18 14 14 14 

For a given partition of training and test sets, feature selection was performed based on the training set. The feature 
selection results for the ten different training groups are shown in Table 1. The average number of selected features was 14. 
The selected feature sets contained an average of two RLS features and twelve SGLD features. A different ART2LDA 
classifier was trained using each training set and the corresponding set of selected features. 

5.1. ART2LDA classification results 

For the ART2LDA classifier, the number of selected features determines the dimensionality of the input vector of 
the ART2 classifier and the dimensionality of the LDA classifier. By using different values for the vigilance parameter, 
ART2 classifiers with different number of classes were obtained. In this study, the vigilance parameter pvig was varied from 
0.9 to 0.99, resulting in a range of 10 to 240 classes. The overall performance of the ART2LDA classifier was evaluated for 
different numbers of ART2 classes because different subset of the samples were separated and classified by ART2. In Fig. 5, 
the classification results for the ART2LDA are compared to the results from LDA alone for the training and test set partition 
no. 3. The classification accuracy, A2, was plotted as a function of the number of ART2 classes. For this training and test set 
partition, when the number of classes was between 20 and 60, the ART2LDA classifier improved the classification accuracy 
for the test set in comparison to LDA. As the number of classes increased to greater than 60, the Az value increased for the 
training data set, but decreased for the test data set and was lower than that of the LDA alone. 

469 



In Table 2 the Az values of the test set for the 10 corresponding partitions are shown. The average test A value is 
0.81 for the ART2LDA and 0.78 for LDA alone. For nine of the ten partitions, the Az value was improved by the hybnd 
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Figure 5. ART2LDA and LDA classification results for 
training and test sets from data group No.3 as a function of 
the number of classes generated by ART2. 

The performance of ART2LDA was also assessed by estimation of the partial area under the ROC curve A 
(0.9) at a 
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TPF higher than 0.9. In Table 3 the Az<°-9> values of the test set for the 10 partitions of training and test sets are Presented 
The average test A**> value is 0.34 for the ART2LDA and 0.27 for LDA. For nine of the ten partitions, the Az< value was 
improved at the high sensitivity operating region (TPF>0.9) of the ROC curve. 

Table 2. Classifiers performance for the 10 test sets. The 
Az values represent the total area under ROC curve. 

Table 3. Classifiers results for the 10 test sets. The A2 

values represent the partial area of the ROC curve above 
(0.9)., the true positive fraction of 0.9 (Az
l    ) 

Data Group 
No. 

LDA ART2LDA 

1 0.77 0.83 
2 0.78 0.80 
'3 0.74 0.78 
4 0.77 0.77 
5 0.77 0.78 
6 0.80 0.83 
7 0.80 0.81 
8 0.77 0.80 
9 0.77 0.80 
10 0.86 0.89 

Mean 0.78 0.81 

Data Group 
No. 

LDA ART2LDA 

1 0.14 0.23 
2 0.17 0.21 
3 0.19 0.32 
4 0.19 0.21 
5 0.24 0.26 
6 0.27 0.38 
7 0.32 0.31 
8 0.32 0.34 
9 0.40 0.49 
10 0.44 0.60 

Mean 0.27 0.34 

470 



6. DISCUSSION 

In this paper a new classifier (ART2LDA) is designed and applied to the classification of malignant and benign 
masses. Tne results indicate that the ART2LDA classifier has better generalizability than an LDA classifier alone. The 
ART2 classifier groups the case samples that are different from the main population into separate classes. The minimum 
number of classes needed to start the clustering of outliers into separate classes depends on how different the outliers are 
from the rest of the sample population. For the ten different partitions of the training and test sets used in this study, the 
minimum number varied between 13 and 15 classes. When the number of ART2 classes was less than this minimum number 
of classes, the ART2 classifier generated only mixed malignant-benign classes and all samples were transferred to the LDA 
stage. In that case, the ART2LDA was equivalent to the LDA classifier alone. When a higher number of classes was 
generated, an increased number of cases that may be considered outliers of the general data population was removed 
(clustered in separate classes). For the ten training sets used in this study, the malignant outliers were gradually removed 
when the number of classes increased. The training accuracy increased when the number of classes increased and Az could 
reach the value of 1.0. However, a large number of ART2 classes led to overfitting the training sample set and poor 
generalization in the test set. The classification accuracy of ART2 for the test set tended to decrease when the number of 
classes was greater than about 70. The large number of classes also led to a reduction in the generalizability of the second- 
stage LDA; the training of LDA with a small number of samples would again result in overfitting the training set, and poor 
generalizability in the test set. This effect was observed when more than 60 or 70 classes were generated by ART2 (see Fig 
5). 

The classification accuracy of ART2LDA increased initially with increased number of classes and then decreased 
after reaching a maximum. The correct classification of the outliers by the ART2 in combination with an improvement in the 
classification by the LDA resulted in the increased accuracy. When the number of ART2 classes was further increased, the 
effects of overfitting by the ART2 and the LDA became dominant and the prediction ability of the ART2LDA decreased. In 
some cases the second stage LDA prediction was much worse than the ART2. In other cases the ART2 could not generalize 
well. The generation of a high number of classes is therefore impractical and unnecessary both from computational and 
methodological point of view. 

When the partial area of the ROC curve above the true positive (TP) fraction of 0.9 (Az
<0,9)) was considered as a 

measure of classification accuracy, the advantage of ART2LDA over LDA alone became even more evident. By removing 
and correctly classifying the outliers the accuracy of the classification is increased at the high sensitivity end of the curve. 

We have performed statistical tests with the CLABROC program to estimate the significance in the differences 
between the Az values from the ART2LDA and the LDA alone, as well as in the differences in the partial Az

(0,9> from the two 
classifiers. The statistical tests were performed for each individual data set partition because the correlation among the data 
sets from the different partitions precludes the use of Student's paired t-test with the ten partitions. We found that the 
differences in both cases did not reach statistical significance because of the small number of test samples and thus the large 
standard deviation in the A2 values. However, the consistent improvements in Az and Az

(0'9) (9 out of 10 data set partitions in 
both cases) suggest that the improvement was not by chance alone, and that the accuracy of a classification task could be 
improved by the use of an ART2 network. 

An important difference between the classifier designed in this study and many others in the CAD field is the 
method of feature selection. In several previously published studies8,22,23 the features were selected from the entire data set 
first, and then the data set was partitioned into training and test sets. This meant that at the feature selection stage of the 
classifier design, the entire data set was considered to be a training set. Depending on the distribution of the features and the 
total number of samples used, the test results in these studies might be optimistically biased24. In this study, initially the 
entire data set was partitioned into training and test sets and then feature selection was performed only on the training set. 
This method results in a pessimistic estimate of the classifier performance24 when the training set is small. We therefore 
expect that the performance will be improved when the classifier designed in this study is trained using a large data set. 
Since our main purpose in this study was to compare the LDA and ART2LDA classifiers, we did not attempt to quantify how 
pessimistic our results are in this study. 

7. CONCLUSION 

A new classifier combining an unsupervised ART2 and a supervised LDA has been designed and applied to the 
classification of malignant and benign masses.   A data set consisting of 348 films (179 malignant and 169 benign) was 

471 



randomly partitioned into training and test subsets. Ten different random partitions were generated. For each ^mng et 
exm°rfeatufes were extracted and feature selection was performed. An average of fourteen features were selected for each 
Soup TeXbrid ART2LDA classifiers and ten LDA models alone were trained by using the ten trammg sets. The ave age 
HL und? the ROC curve for the test sets was better for ART2LDA (AI=0.81) compared to the LDA alone (A =078)_ A 
ti m; ovement was obtained when the partial ROC area above a true-positive fr^on of 0.^> was> ™^£ ™ 
fverage partial Az for ART2LDA was 0.34 as compared to 0.27 for LDA. These results indicate that the hybrid classifier ,s 
promising approach for improving the accuracy of classifiers for CAD applications. 
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ABSTRACT 

A receiver operating characteristic (ROC) experiment was conducted to evaluate the effects of pixel size on the 
characterization of mammographic microcalcifications. Digital mammograms were obtained by digitizing screen-film 
mammograms with a laser film scanner. One hundred twelve two-view mammograms with biopsy-proven 
microcalcifications were digitized at a pixel size of 35 um x 35 fim. A region of interest (ROI) containing the 
microcalcifications was extracted from each image. ROI images with pixel sizes of 70 urn, 105 (im, and 140 urn were 
derived from the ROI of 35 um pixel size by averaging 2 x 2, 3 x 3, and 4x4 neighboring pixels, respectively. The ROI 
images were printed on film with a laser imager. Seven MQSA-approved radiologists participated as observer^. The 
likelihood of malignancy of the microcalcifications was rated on a 10-point confidence rating scale and analyzed with ROC 
methodology. The classification accuracy was quantified by the area, A„ under the ROC curve. The statistical significance 
of the differences in the Az values for different pixel sizes was estimated with the Dorfman-Berbaum-Metz (DBM) method 
for multi-reader, multi-case ROC data. 

It was found that five of the seven radiologists demonstrated a higher classification accuracy with the 70 urn or 105 
urn images. The average Az also showed a higher classification accuracy in the range of 70 to 105 um pixel size. However, 
the differences in A2 between different pixel sizes did not achieve statistical significance. The low specificity of image 
features of microcalcifications and the large interobserver and intraobserver variabilities may have contributed to the 
relatively weak dependence of classification accuracy on pixel size. 

KEY WORDS: Digital mammography, detector, pixel size, microcalcifications, classification, ROC study. 

1. INTRODUCTION 

X-ray mammography is the most effective diagnostic tool for early detection of breast cancers. However, the image 
quality of conventional mammography is limited by the contrast sensitivity and dynamic range of screen-film systems. The 
recent advent of digital detector technology will make digital mammography a clinical reality in the near future.  Digital 

j|[| mammography is expected to provide improved image quality that may lead to an improvement in the accuracy of breast 
cancer diagnosis. 

The spatial resolution of current digital detectors is generally lower than that of screen-film systems. Higher 
resolution digital detectors require smaller pixel sizes. However, development of digital detectors with small pixel sizes is 
not only technologically demanding, but the requirements for image transmission, archiving, and display also increase rapidly 
as the matrix size increases. The trade-off between spatial resolution and the cost and efficiency is an important 
consideration in the development of digital mammography systems. 

We have performed an ROC study to evaluate the effects of pixel size on radiologists' characterization of 
microcalcifications on digitized mammograms. Using seven radiologists experienced in mammography, we compared their 
classification accuracy of malignant and benign microcalcifications in the pixel size range from 35 urn to 140 um. The 
results of the ROC study are discussed in this paper. 
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2. MATERIALS AND METHODS 

2.1 Data Set 

Digital mammograms were obtained by digitizing screen-film mammograms with a laser film scanner. One hundred 
twelve two-view mammograms with biopsy-proven microcalcifications were randomly selected from patient files. The data 
set included microcalcifications with a range of subtlety. The longest dimension of the cluster ranged from 2 to 18 mm, and a 
few cases contained diffuse microcalcifications spreading over a large area. All mammograms were digitized at a pixel size 
of 35 urn x 35 urn. A region of interest (ROI) of 1024 x 1024 pixels containing the microcalcification cluster was extracted 
from each image. ROI images with pixel sizes of 70 |im, 105 urn, and 140 (im were derived from the ROI of 35 urn pixel 
size by averaging 2 x 2, 3 x 3, and 4x4 neighboring pixels, respectively. 

Since viewing images on display monitors can introduce variables that may be difficult to control, we printed the 
ROI images on film with a laser imager for the observer performance study. To reduce the effects of image size, the ROIs 
with the three larger pixel sizes (smaller matrix size for the same ROI image) were enlarged to the same printed image size as 
the 35 um pixel size image by interpolation. The proper interpolation scheme was chosen by visual comparison of the 
microcalcification clusters obtained with various interpolation parameters by a radiologist experienced in mammography. 
The printed ROIs had a size of 84 mm x 84 mm, which corresponded to a pixel pitch of about 82 urn for the laser imager. 
The printed images were magnified by about 2.3 times, compared with their size on the original screen-film mammograms. 
However, since radiologists often read microcalcifications with a magnifier, the magnified image should not affect the 
classification of the microcalcifications. To maintain the same displayed contrast for images of different pixel sizes, the fou* 
ROIs of different pixel sizes were printed on the same piece of film. This would minimize the effect of potential fluctuations 
in the printer calibration and in the development conditions of the laser film on the relative contrast of the printed images. 

2.2 Observer Performance Study 

Seven MQSA-approved radiologists participated as observers. Each observer read the two-view images in four 
reading sessions. In each session, one-quarter of the images of each pixel size were read. Each case appeared once and only 
once in each session. The reading order of the images was randomized for each observer. The likelihood of malignancy of 
the microcalcifications was rated on a 10-point confidence rating scale and analyzed with ROC methodology *. The 
confidence rating scale was designed by an experienced mammographer and was related to the BI-RADS ratings. A training 
session was conducted before each reading session to familiarize the observers with the confidence rating scale. The 
classification accuracy was quantified by the area, Az, under the ROC curve. The average ROC curve for each reading 
condition was derived by averaging the slope and intercept parameters obtained from the ROC fitting programs for the 
individual observers' ROC curves. The statistical significance of the differences in the ROC curves for different pixel sizes 
was estimated with the Dorfman-Berbaum-Metz (DBM) method for multi-reader, multi-case ROC data^. 

3. RESULTS 

The area under the ROC curves for each radiologist observer is shown in Table 1 below. It was found that five of 
the seven radiologists demonstrated a higher classification accuracy with the 70 um or 105 urn images than with the 35 urn 
or 140 urn images. The average Az also showed a higher classification accuracy in the pixel size range of 70 to 105 urn. 
However, the differences in Az between different pixel sizes did not achieve statistical significance based on analysis by the 
DBM method. The intraobserver variability on the likelihood of malignancy ratings was very large. The difference in the 
ratings for the same film read at different times were as large as 6. The interobserver variablity was also large. The decision 
threshold for microcalcifications being suspected for malignancy varied over a wide range among the seven radiologists. 
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Table 1. The area under the ROC curves, Az, of the individual ROC curves for the seven radiologists (Rl, ..., R7) and the 
area under the average ROC curves obtained from averaging the slope and intercept parameters of the individual 
ROC curves. The standard deviations of the Az values are, on average, 0.05. 

Pixel Size 
(urn) 

A, 
Rl R2 R3 R4 R5 R6 R7 Average 

35 0.69 0.62 0.75 0.75 0.65 0.73 0.78 0.71 
70 0.73 0.71 0.77 0.80 0.64 0.65 0.77 0.73 
105 0.80 0.63 0.74 0.81 0.73 0.60 0.77 0.73 
140 0.69 0.64 0.68 0.80 0.68 0.74 0.76 0.71 

4. DISCUSSION 

The low specificity of image features of microcalcifications and the large interobserver and intraobserver 
variabilities may have contributed to the relatively weak dependence, if any, of classification accuracy on pixel size. This 
result is consistent with the finding by Karssemeijer et al.3 in their ROC study that compared the classification accuracy of 
microcalcifications on original screen-film mammograms with images digitized at 100 um pixel size and viewed on a display 
monitor. The dependence of classification accuracy on pixel size may be further weakened when other patient information is 
available for making diagnostic decision as in clinical practice. The lower classification accuracy at 35 \ua may be caused by 
the higher image noise level at this small pixel size. Because of the large interobserver and intraobserver variabilities, farther 
studies with a larger data set and a larger number of observers will be needed to determine if the trend observed in this, study 
will achieve statistical significance. In addition, since digitized mammograms and mammograms acquired with digital 
detectors have different noise, contrast sensitivity, and resolution properties, further investigations are needed to determine if 
a similar trend holds for digital mammograms. 

! It may be noted that the current ROC study concentrated on the effect of pixel size on the classification of malignant 
and benign microcalcifications. Previously we had conducted an ROC study4 to compare the detectability of subtle 
microcalcifications on original screen-film mammograms with that on mammograms digitized at 100 urn pixel size using an 
optical drum scanner. It was found that the detection accuracy of the subtle microcalcifications decreased when radiologists 
read the 100 \xm pixel size digitized images. Our previous study^ that investigated the detection of microcalcifications by a 
computer program also indicated a reduction in detectability when the digitization pixel size increased from 35 urn to 140 
u.m. The results from these experiments indicate that image quality may be more important for the detection task than for the 
classification task in mammographic imaging. 
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ABSTRACT 

The major purpose of this paper was to evaluate the Dorfman/Berbaum/Metz1 (DBM) method for 
analyzing multireader receiver operating characteristic (ROC) discrete rating data on reader split-plot and 
case split-plot designs. It is not always appropriate or practical for readers to interpret imaging studies of 
the same patients in all modalities. In split plot designs, either a different sample of readers is assigned to 
each modality or a different sample of cases is assigned to each modality. For each type of split-plot 
design, a series of null-case Monte Carlo simulations were conducted. The results suggest that the DBM 
method provides trustworthy alpha levels with discrete ratings when ROC area is not too large, and case 
and reader sample sizes are not too small. In other situations, the test tends to be somewhat conservative. 
Our Monte Carlo simulations show that the DBM multireader method can be validly extended to the 
reader-split and case-split plot designs. 

Keywords: Receiver operating characteristic curve (ROC); Diagnostic radiology; Decision theory, 
Analysis of variance. 

1. INTRODUCTION 

The major purpose of this paper was to evaluate the Dorfman/Berbaum/Metz1 (DBM) method for 
analyzing multireader receiver operating characteristic (ROC) discrete raring data on reader-split and 
case-split designs. The method involves analysis of variance of pseudovalues computed by the 
Quenouille-Tukey jackknife. The basic data for the analysis are pseudovalues of ROC parameters 
computed by jackknifing cases separately for each observer. The problem of multireader ROC analysis is 
of considerable importance in the evaluation of diagnostic imaging systems. Recently, Obuchowski and 
Zepp2 reviewed the major papers on prospective studies of image interpretation published in the 
American Journal ofRoentgenology in the first four months of the years 1990 and 1995. They discovered 
an important trend: "In the 1990 literature, we noted eight multiple-reader and 18 single-reader studies; 
in contrast, in the 1995 literature, we found 29 multiple-reader and eight single-reader studies. This 
trend reflects an increased awareness of the importance of multiple-reader studies. " 

A principal advantage of the fully crossed factorial design analyzed by Dorfman, Berbaum, Metz1 is that 
it provides good precision for comparing modalities because between-reader variability is excluded from 
the experimental error. In the factorial design, only within-reader variation enters the experimental error, 
since any two modalities can be compared directly for each reader. It is not always appropriate or 
practical for readers to interpret imaging studies of the same patients in all modalities. For instance, when 
it is rare for readers to be expert in both modalities being compared, it is better to assign different readers 
to each modality. Also, when an interpretation of a case in one modality can affect interpretation ofthat 
case in another modality, it is appropriate for each same reader to interpret different cases in each 
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modality. Under these circumstances, split-plot designs offer solutions. In split plot designs, either a 
different sample of readers is assigned to each modality or a different sample of cases is assigned to each 
modality. In our adaptation of the reader split-plot design, it is assumed that readers, called blocks, are a 
random sample from some population and that each reader is tested under one of the two modalities. To 
facilitate comparison between the factorial and reader split-plot designs, we assume that there are n 
different readers in each modality, whereas in the factorial design, the same n readers are tested in both 
modalities. Similarly, in the case split-plot design we assume that there are c different cases in each 
modality, whereas in the factorial design the same c cases are tested in each modality. 

2. METHODS 

The following mixed-effect linear decision model was used for the split-plot on reader design to generate 
raw data from different magnitudes for the variance components: 

Yij* = ßt + *« + R{T\t + C« + (*Q* + £w)  > 
in which Ut = 0 if truth value (r) is negative or & = a/b if truth value (f) is positive, where a and b are the 
population "location" and "scale" parameters, respectively, of the mean binormal ROC curve, xit is the 
fixed effect of modality i for truth value t, R(x)ijt is the random effect of reader/ nested within modality i 
for truth value t, C^ is the random effect of case k for truth value t, (xC)^ is the random modality by case 
interaction effect for modality i, case k for truth value t, and e^, is the random error associated with one f 
reading defined by modality /, reader j, case k for truth value t. 

The population ROC areas, latent variable structures, case-sample sizes and normal/abnormal case- 
sample ratios studied by Roe and Metz3 were adapted for these simulations. Two changes were instituted 
for the split-plot on readers design. First, the variance component for reader-case interaction in the 
factorial design was combined with the residual in the split-plot on readers design. Second, the reader 
component of variance and the treatment by reader component of variance of the factorial design were 
summed to produce the readers nested within treatments component of variance in the split-plot on 
readers design. 

Table 1 presents the analysis of variance for the split-plot design on readers using unrestricted 
parameterization. The lower part of Table 1 gives rules for selecting error terms to test treatment effects. 

Table 1: Split Plot on Readers Analysis of Variance: Unrestricted Parameterization 
Source df Expected Mean Square  

Treatments (T) 
Readers (Treatments)(R(T)) 
Cases(C) 
TxC 
R(T)xC 

1 
2(r-l) 
c-1 
c-1 
2(r-l)(c-l) 

rco C0\(T) 

CO2, RM 

+    re2, 

2ro2
r 

•cC 

ro^c 
ro\c 

+ 
+ 
+ 
+ 

o2 
R«C 

R(x)C 

°R(T)C 

" RMC 

°R<t)C 

Rules for Selecting Error Term to Test for Treatment Effects: 

(i)     If MS,«,, / MSW„ xC < 1, and MSTC/ MS^ xC < 1, use MS^ xC; 
(ii)    lfMS^/USmxC< l,andMS,c/MSR(t)J<c>l,useMSTC; 
(in)   If MS«,, / MS«,, „ c > 1, and MS,C / USm „ c < 1, use MS«,,; 
(iv)   IfMWMS 3

R(T> x C ' > 1, and MStC / MS^, xC > 1, use Satterthwaite error term. 
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The following mixed-effect linear decision model was used for the split-plot on cases design to generate 
raw data from different magnitudes for the variance components: 

in which & = 0 if truth value (r) is negative or \^ = a/b if truth value (0 is positive, where a and b are the 
population "location" and "scale" parameters, respectively, of the mean binormal ROC curve, Tit is the 
fixed effect of modality i for truth value f, C(x)ikt is the random effect of case k nested within modality i 
for truth value t, RJt is the random effect of reader; for truth value t, (x/?)ijt is the random modality by 
reader interaction effect for modality i, reader; for truth value t, and £(ijkt) is the random error associated 
with one reading defined by modality i, reader;', case k for truth value r. 

Two changes were instituted for the split-plot on cases design. First, the variance components for cases 
and treatment by cases of the factorial design were combined to produce the component of variance for 
cases nested within treatments. Second, the reader-by-case interaction and the residual of the factorial 
design were summed to produce the residual component of variance for the split-plot on cases design. 

Table 2 presents the analysis of variance for the split-plot design on cases using unrestricted 
parameterization. The lower part of Table 2 gives rules for selecting error terms to test treatment effects. 

Table 2: Split Plot on Cases Analysis of Variance: Unrestricted Parameterization 
Source df       Expected Mean Square  

Treatments (T) 
Case (Treatments)(C(T)) 
Reader(R) 
TxR 
C(T)xR       

1 
2(c-l) 
r-1 
r-1 
2(r-l)(c-l) 

ere2,     +   re2 

ro2, CM 

+      CO2. 

2CC2» 

■tR 

co2
A 

+      Oc(t)R 

+    o2, 
+ 

ccr. xR 

o2 

+    o2 

C(x)R 

C<x)R 

C(x)R 

CWR 

Rules for Selecting Error Term to Test for Treatment Effects: 

I 

(i) If MS«,, / MSCW ,R z 1, and MStlL/ MSCW *R < 1, use MSCW *R; 
(ii) If MS«,, / MScw x R ^ 1, and MS, R / MS^,*R > 1, use MSÄ; 
(iii) If MSC(X) / MSCW „R > 1, and MStR/ MSaT) xR < 1, use MSCW ; 
(iv) If MSCW / MSc(t) ,R> 1, and MS,R/ MS^, ,R> 1, use Satterthwaite error term. 

For each type of split plot design, a series of null-case Monte Carlo simulations were conducted with two 
modalities. For the split-plot design on readers, 3,5, and 10 different hypothetical readers were nested 
within each modality, and 10+/90-, 25+/25-, 50+/50-, and 100+/100-cases were crossed with 
modalities. For the split-plot design on cases, 10+/90-, 25+/25-, 50+/50-, and 100+/100-cases were 
nested within each modality, and 3, 5, and 10 hypothetical readers were crossed with modalities. 

Our series of null-case computer simulations were conducted to examine the relation between the 
nominal type I error rate and the empirical type I error rate with five-category discrete rating data as 
recommended by Swets and Pickett.4 Two thousand samples were generated for each condition. In the 
computer simulation, a continuous decision variable was generated by assuming a linear mixed model for 
the decision variable comparable to the linear mixed model for the jackknife pseudovalues. Roe and 
Metz3 and Dorfinan, Berbaum, Lenth et al.5 used the equal-variance binormal model (b = 1). Therefore, 
in all of the Monte Carlo simulations that follow, we also used the equal-variance binormal model to 
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facilitate comparison between our results and their results. 

The'null hypothesis was true in all simulations, and the population ROC curves were the same for both 
modalities. Three binormal population ROC curves with Az values of .702, .855, and .961, corresponding 
to Upos = 0.75,1.5, and 2.5, were included in the study. The magnitudes of the decision-variable variance 
components were chosen to be the same for actually-positive and actually-negative cases. The decision 
thresholds were set at 0.25, 0.75, 1.25, and 1.75 corresponding to false-positive fractions of 0.40, 0.23, 
0.11, and 0.04. The decision thresholds serve mathematically as the values of the category boundaries for 
the continuous random decision variable. The decision thresholds were chosen to mirror the moderate 
conservatism often observed in radiologic image interpretation. 

3. RESULTS 

For equal allocation ratios, small (<4r=0.702) and moderate ROC area (/12=0.855), empirical Type I error 
rate closely matched nominal alpha level; however, for very large ROC area (A=0.961), empirical Type I 
error rate was somewhat smaller than nominal alpha level. For the most part, these findings are consistent 
with those reported by Roe and Metz,3 and by Dorfman, Berbaum, Lenth, et al.5 

Figures 1,2, and 3 present the results for areas of .702, .855, and .961, respectively, with the upper panel 
representing the split-plot design on readers and the lower panel representing the split-plot design on 
cases. To facilitate comparison with Monte Carlo studies based on the factorial design, we used the same 
labels for the variance structures as those employed by Roe and Metz,3 and Dorfman, Berbaum, Lenth et 
al.5 In these figures, the 95% probability band about the nominal alpha level is shown as the band 
between the two horizontal lines at 0.040 and 0.060 for a = 0.05. The boundaries we selected are standard 
critical values for 95% probability bands for a binomially distributed random variable derived from the 
normal approximation to the binomial distribution when the sample size n is large and the binomial 
probability/? is known.6 The boundaries define a 5% rejection region for the null hypothesis that alpha is 
a specified value, and that empirical Type I error rate follows a binomial distribution with parameters n = 
2000 and/? = 0.05. 

In this paper, we focus on equal allocation ratios. The split-plot design on readers appears to perform 
somewhat better than the split-plot design on cases. The top panel of Figures 1 and 2 (A2 = 0.702 and 
0.855, split-plot on readers) shows that the Monte Carlo data points fell, for the most part, within the 95% 
probability band when the number of cases was at least a hundred (50+/50-), or the number of readers 
per modality was at least ten. With fewer than a hundred cases and fewer than ten readers per modality, 
the statistical test was slightly conservative. The bottom panel of Figures 1 and 2 (Az = 0.702 and 0.855, 
split-plot on cases) shows that the Monte Carlo data points fell, for the most part, within the 95 % 
probability band when there are ten readers. With fewer than ten readers, the statistical test was slightly 
conservative. 

Figure 3 (A2 = 0.961) shows that the Monte Carlo data points almost always fell outside the 95% 
probability band. For both split-plot designs, 200 cases was sufficient to keep the points either within the 
band or close to it. With 100 cases, the test was somewhat conservative; with 50 cases, the test was quite 
conservative. 
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Split-plot Design(on readers) for Az=.702 
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Split-plot Design (on cases) for Az=0.702 
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Figure 1: Split-plot results on readers (top) and cases (bottom) for^z=702, and nominal ot=. 05. 
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Split-plot Design(on readers) for Az=855 
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Split-plot Design (on cases) for Az=0.855 
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Figure 2: Split-plot results on readers (top) and cases (bottom) for;4z= 855, and nominal a=.05. 
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Split-plot Design(on readers) for Az=.961 
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Split-plot Design (on cases) for Az=0.961 
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Figure 3: Split-plot results on readers (top) and cases (bottom) for^z=.961, and nominal a-.05. 
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4. DISCUSSION 

Our Monte Carlo simulations show that the DBM multireader method can be validly extended to the 
reader-split and case-split plot designs. The results suggest that the DBM method provides trustworthy 
alpha levels with discrete ratings when ROC area is not too large, and case and reader sample sizes are 
not too small. In other situations, the test tends to be conservative. A statistical test is conservative if the 
empirical Type I error rate level is smaller than the nominal alpha level. If one rejects the null hypothesis 
at a specified nominal alpha level, a conservative statistical test is preferred to a liberal test because it has 
a lower Type I error rate. The Monte Carlo data showed that the statistical test generally becomes more 
conservative with large area and decreasing case sample size. 

In our previous Monte Carlo validation of the DBM multireader method in a fully crossed factorial design 
as well as in these reader and case split-plot studies, we used discrete rating scales. Pseudo-continuous 
rating scales have been recommended over discrete scales for routine use in ROC studies in diagnostic 
radiology primarily because it was concluded that pseudo-continuous rating scales were less likely to 
yield binormal degenerate data sets than discrete rating scales.7,8 Binormal degenerate data sets are no 
longer an issue in ROC analysis.9"" Moreover, the empirical evidence suggests that discrete and pseudo- 
continuous scales can often be used interchangeably in image evaluation studies when the investigator is 
interested in ROC area because they produce virtually the same results.7 If, however, the experimenter is^ 
interested in the operating points as well ROC area, then discrete rating scales should be used.5 Sensitivity 
and specificity are determined by the location of the operating points on the ROC curve as well as by the 
discriminability of the underlying distributions of normal and abnormal cases on the latent decision 
dimension. The operating points are determined by decision thresholds, and in clinical trials, these 
decision thresholds are, in fact, action thresholds. For instance, in the American College of Radiology 
Breast Imaging Reporting and Data System (BI-RADS), "probably benign finding" translates into the 
course of action "short interval followup suggested," "suspicious abnormality" translates into the course 
of action "biopsy should be considered," and "highly suggestive of malignancy" translates into 
"appropriate action should be taken".12 Some diagnostic imaging systems may lead to more conservative 
or liberal actions than others. For example, a concern with algorithms for computer-aided diagnosis 
(CAD) is that they seem to give too many false positives.13 If the radiologist's decision thresholds are 
changed by the rate of CAD false positives, changes in sensitivity and specificity would occur, but would 
not be observed with LABROC-type algorithms that sort pseudo-continuous rating data into discrete 
uniformly distributed categories.14,15 Because the category boundaries defined by such algorithms do not 
correspond to the decision thresholds used by the observers both within and between modalities, 
conclusions about radiologist performance might be drawn based solely on the ROC area, while 
inappropriately ignoring the differences in true and false positive fractions associated with the observers' 
operating points.5 

5. CONCLUSIONS 

Our Monte Carlo simulations show that the DBM multireader method can be validly extended to reader- 
split and case-split plot designs. 
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